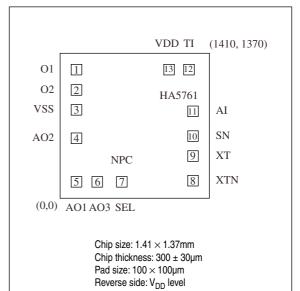
NPC

OVERVIEW


The CF5761 series are analog clock ICs with alarm functions that derive their timing from a standard 32.768kHz oscillator element. Two kinds of alarm output are available and can be selected using a control pin. The series lineup comprises devices with various alarm patterns and motor outputs for a wide range of clock specifications. They support convenient functions, such as input chattering elimination circuit and power-on clear functions. They are fabricated using Molybdenum-gate CMOS process, realizing low power consumption.

FEATURES

- 32.768kHz fundamental frequency oscillator
- Feedback resistor and oscillator capacitor C_D built-in
- Supports various alarms: piezo-alarm, electromagnetic speaker
- Snooze function
- Switchable alarm function using SEL pin
- Alarm auto-stop function (see series lineup)
- Input chattering elimination circuit (SEL, AI, SN)
- Test function
- 1.2 to 3.6V operating supply voltage
- Molybdenum-gate CMOS process
- Chip form (CF5761××)

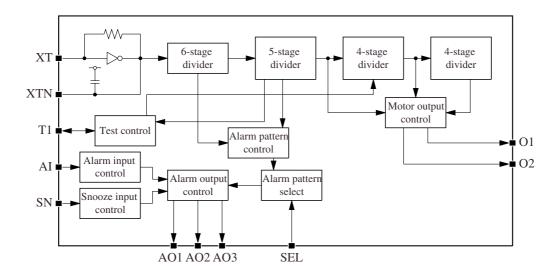
PAD LAYOUT

(Unit: μm)

ORDERING INFORMATION

Device	Package
CF5761××	Chip form

SERIES LINEUP


					CF57	61CA					CF57	61EA					CF57	61HA		
Built-in	C _G [pł	-]				4					4	1						4		
capacitance1	C _D [pF	-]			2	!7				27				27						
	Active level		-					LOW					LOW							
Motor output	Needle perio	d t _{CY} [s]		().0625 (8	Hz sweep)					1			10					
	Pulsewidth t _P	W [ms]			62.5 (50	0% duty)					23	3.4					13	3.7		
Al input	Active level				HIGH (p	ull-down)					HIGH (p	ull-down)					HIGH (p	ull-down)		
	Bounce delay	/ [ms]				2.5						2.5						2.5		
	Active level				HIGH (p	ull-down)					HIGH (p	ull-down)					HIGH (p	ull-down)		
SN input	Snooze time	t _{SNZ} [s]			3	00					30	00					30	00		
	Bounce delay	/ [ms]			62	2.5					62	2.5					62	2.5		
	SEL pin			LOW			HIGH			LOW			HIGH			LOW			HIGH	
				imple ala			Simple alarm		Ste	p tone al	arm	Si	mple ala	rm	Si	imple alar	m	S	imple ala	rm
Application				1, AO3: t 2: motor		AO1, AO3: tone AO2: Magnet speaker			AO1, AO2: motor bell AC			AO1,	, AO2: motor bell		AO1, AO3: tone		AO1, AO3: tone		one	
	Pin		AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3
A	Active level		н	н	L		н		н	L		н	L		Н	Н	L	н	н	L
	Frequency f _P	W [kHz]	4	DC	4		2		-	-	1	DC	DC		4	-	4	4	-	4
		Step 1	8	-	8		8	-	1+2+4+8	1+2+4+8		-	-		1+16	1+16	1+16	-	-	
	Modulation	Step 2	-	-	-		-		1+2+8	1+2+8		-	-		-	-	-	See special timing in functional description.	-	di
	f _{CY} [Hz]	Step 3	-	-	-		-		1+8	1+8		-	-		-	-	-		-	scri
		Step 4	-	-	-		-		DC	DC		-	-		-	-	-		-	alde
Alarm output		Step 1	50	-	50	64Hz clock	50	32Hz clock	50	50	32kHz	-	-	32kHz F	50	-	50	tion	-	tion
	Duty [%]	Step 2	-	-	-	output	-	output	50	50	output	-	-	output	-	-	-	lunc	-	Junc
	Duty [/o]	Step 3	-	-	-		-		50	50		-	-		-	-	-	.⊑ 0	-	. <u>u</u> 0
		Step 4	-	-	-		-		-	-		-	-		-	-	-	Line	-	E
		Step 1	-	-	-		-		0-8	0–8	1	-	-		-	-	-	cial t		cial t
	Step time [s]	Step 2	-	-	-		-		8–16	8–16	1	-	-	-	-	-	-	spee	-	See special timing in functional description.
0	orob muo [o]	Step 3	-	-	-		-	-	16-24	16-24		-	-		-	-	-	See	-	
		Step 4	-	-	-		-		24-	24–		-	-		-	-	-		-	
	Auto-stop [s]					one					No							one		
	I _{OH} [mA] min.		-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.01	-0.01	-0.9	-0.01	-0.01	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9
	I _{OL} [mA] min.		0.9	0.01	0.9	0.9	0.01	0.9	0.01	0.9	0.01	0.01	0.9	0.01	0.9	0.01	0.9	0.9	0.01	0.9

1. C_G and C_D built-in parasitic capacitance (C_G = C_D = 4pF)

					CF57	61LB					CF57	61MB					CF57	61NB		
Built-in	C _G (p	F]			4	1						4					4	4		
capacitance ¹	C _D [p	F]			3	4				34				34						
	Active level L			LC	W					-	-			LOW						
Motor output	Needle period	d t _{CY} [s]		1				0.0625 (8Hz sweep)							1					
	Pulsewidth t _P	_W [ms]			31	.3					62.5 (50)% duty)					23	3.4		
Al input	Active level				LOW (oull-up)					LOW (pull-up)					LOW (oull-up)		
Ai iliput	Bounce delay	' [ms]			62	2.5					62	2.5					62	2.5		
	Active level				LOW (oull-up)					LOW (pull-up)					LOW (oull-up)		
SN input	Snooze time	t _{SNZ} [s]			30	00					3	00					30	00		
	Bounce delay	' [ms]			62	2.5					62	2.5					62	2.5		
	SEL pin			LOW			HIGH			LOW			HIGH			LOW			HIGH	
	Application		Step	tep volume alarm Simple alarm Step volume alarm Simple alarm			Step volume alarm			Step volume alarm										
Application		AO	1, AO2: t	one	AO1, AO2: motor bell			AO	AO1, AO2: tone		AO1,	AO1, AO2: motor bell		AO1, AO2: tone		AO1, AO2: tone		one		
	Pin		AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3	AO1	AO2	AO3
	Active level		Н	L		Н	Н		Н	L		Н	н		Н	L		Н	L	
	Frequency f _{Pl}		2	2		DC	DC		2	2		DC	DC		4	4		2	2	
		Step 1	1+8	1+8		-	-		1+8	1+8		-	-		1+8	1+8	1	1+8	1+8	
	Modulation	Step 2	1+8	1+8		-	-		1+8	1+8		-	-		1+8	1+8	1	1+8	1+8	4
	f _{CY} [Hz]	Step 3	1+8	1+8		-	-	1+8		1+8		-	-		1+8	1+8		1+8	1+8	4
		Step 4	-	-		-	-		1+8	1+8		-	-		-	-		-	-	-
Alarm output		Step 1	6.25	6.25	Not	-	-	Not	6.25	6.25	Not	-	-	Not	6.25	6.25	Not	12.5	12.5	Not
	Duty [%]	Step 2	12.5	12.5	used	-	-	used	12.5	12.5	used	-	-	used	12.5	12.5	used	25	25	used
		Step 3	50	50	-	-	-		25	25		-	-		50	50	4	50	50	-
		Step 4	-	-	-	-	-		50	50		-	-		-	-	4	-	-	4
		Step 1	0-8	0-8	-	-	-		0-4	0-4		-	-		0-8	0-8		0-8	0-8	
Step tim	Step time [s]	Step 2	8-16	8-16		-	-		4-8	4-8		-	-	-	8-16	8-16		8-16	8-16	
		Step 3	16-	16-		-	-		8-12	8-12		-	-		16-	16-	-	16-	16-	
	Auto star ()	Step 4	-	-		-	-		12-	12-		-	-		-	-		-	-	
	Auto-stop [s]				30							00						00		1
	I _{OH} [mA] min.		-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9
	I _{OL} [mA] min.		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9

1. C_{G} and C_{D} built-in parasitic capacitance (C_{G} = C_{D} = 4pF)

BLOCK DIAGRAM

PAD DESCRIPTION and DIMENSIONS

Number	Name	1/0	Function	Pad dim	ensions
Number	Name	10	Function	X [µm]	Y [µm]
1	01	0	Movement motor drive output 1 (CMOS output)	155	1215
2	02	0	Movement motor drive output 2 (CMOS output)	155	1023
3	VSS	-	Ground	155	835
4	AO2	0	Alarm output 2	155	567
5	AO1	0	Alarm output 1	155	155
6	AO3	0	Alarm output 3	351	155
7	SEL	I	Alarm function select. Pull-down resistor built-in	583	155
8	XTN	0	Crystal oscillator output. Oscillator capacitance C _D built-in	1255	166
9	ХТ	I	Crystal oscillator input. Crystal connected between XT and XTN	1255	399
10	SN	I	Snooze input Pull-down resistor built-in (CF5761CA, EA, HA) Pull-up resistor built-in (CF5761LB, MB, NB)	1255	587
11	AI	I	Alarm input Pull-down resistor built-in (CF5761CA, EA, HA) Pull-up resistor built-in (CF5761LB, MB, NB)	1255	821
12	T1	I/O	Test pin	1217	1215
13	VDD	-	Supply	1029	1215

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	$V_{DD} - V_{SS}$		-0.3 to 5.0	V
Input voltage range	V _{IN}		V _{SS} to V _{DD}	V
Operating temperature range	T _{opr}		-30 to 80	°C
Storage temperature range	T _{stg}		-65 to 150	°C

Electrical Characteristics

1.5V operation

 $Ta = 25^{\circ}C, V_{SS} = 0V, V_{DD} = 1.5V, X'tal (f_0 = 32.768 \text{kHz}, C_I = 35 \text{k}\Omega \text{ max}, C_G = 20 \text{pF}) \text{ unless otherwise noted}$

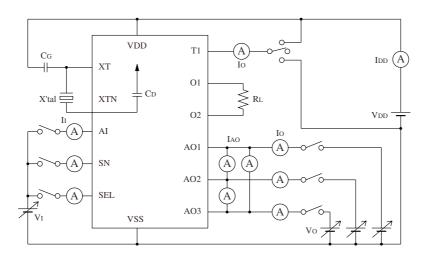
Devenueter	Cumhal	Condition		Rating		Unit	
Parameter	Symbol	Condition	min	typ	max	Unit	
Operating voltage	V _{DD}		1.2	1.5	3.6	V	
Oscillator startup time ¹	t ₁	V _{DD} = 1.2V	-	_	5.0	s	
Frequency voltage characteristic	∆f/f		-	_	1.0	ppm/0.1V	
0		No output load	-	0.5	1.0		
Current consumption ¹	I _{DD}	No output load, F output	-	0.9	1.8	μΑ	
O1, O2 motor output current ²	I _{OUT}	V_{DD} = 1.2V, R_L = 400 Ω	2.40	2.55	-	mA	
AI HIGH-level input current	I _{IH1}	V _{DD} = 1.5V, V _{IH} = 1.5V	0.6	3	7.5	μA	
AI LOW-level input current	I _{IL1}	V _{DD} = 1.5V, V _{IL} = 0V	0.6	3	7.5	μA	
SN, SEL HIGH-level input current	I _{IH2}	V _{DD} = 1.5V, V _{IH} = 1.5V	0.2	1	2		
	I _{IH3}	V _{DD} = 1.5V, V _{IH} = 0.5V	9	18	36	μΑ	
CN LOW level insut surrent	I _{IL2}	V _{DD} = 1.5V, V _{IL} = 0V	0.2	1	2		
SN LOW-level input current	I _{IL3}	V _{DD} = 1.5V, V _{IL} = 1.0V	9	18	36	- μΑ	
AO1, AO2, AO3 LOW-level output	I _{OL1}	V _{DD} = 1.5V, V _{OL} = 0.75V	900	2000	-		
current ³	I _{OL2}	V _{DD} = 1.5V, V _{OL} = 0.75V	10	30	100	- μΑ	
AO1, AO2, AO3 HIGH-level output	I _{OH1}	V _{DD} = 1.5V, V _{OH} = 0.75V	900	2000	-		
current ³	I _{OH2}	V _{DD} = 1.5V, V _{OH} = 0.75V	10	30	100	μΑ	
T1 LOW-level output current	I _{OLT}	V _{DD} = 1.5V, V _{OL} = 1.5V	5	10	20	μA	
T1 HIGH-level output current	I _{ОНТ}	V _{DD} = 1.5V, V _{OH} = 0V	5	10	20	μA	
F output voltage ⁴	V _F	V_{DD} = 1.2V, output capacitance C _L = 50pF	0.4	-	-	V	
Built-in capacitance	CD			See series lineu	ip	pF	

1. Measured using standard circuits.

R_L is the resistance of the motor coil connected between O1 and O2.
The rating varies depending on the device selected. Please refer to the series lineup table for details.
F output voltage is the difference voltage, with load capacitor C_L connected between F and VSS pins, between 0.5V_{DD} and the peak voltage.

3.0V operation

Ta = 25°C, V_{SS} = 0V, V_{DD} = 3.0V, X'tal (f₀ = 32.768kHz, C_I = 35k\Omega max, C_G = 20pF) unless otherwise noted


Deverselar	Cumhal	Quadition		Rating		Unit	
Parameter	Symbol	Condition	min	typ	max	– Unit	
Operating voltage	V _{DD}		1.2	3.0	3.6	V	
Oscillator startup time ¹	t ₁	V _{DD} = 2.4V	-	-	5.0	s	
Frequency voltage characteristic	$\Delta f/f$		-	_	1.0	ppm/0.1V	
Oursent concernation 1	1	No output load	-	0.6	1.2		
Current consumption ¹	I _{DD}	No output load, F output	-	1.3	2.6	μΑ	
O1, O2 motor output current ²	I _{OUT}	V_{DD} = 2.4V, R_L = 1k Ω	2.26	-	-	mA	
AI HIGH-level input current	I _{IH1}	V _{DD} = 3.0V, V _{IH} = 3.0V	0.6	3	7.5	μA	
AI LOW-level input current	I _{IL1}	V _{DD} = 3.0V, V _{IL} = 0V	0.6	3	7.5	μA	
SN, SEL HIGH-level input current	I _{IH2}	V _{DD} = 3.0V, V _{IH} = 3.0V	0.2	1	2		
	I _{IH3}	V _{DD} = 3.0V, V _{IH} = 0.5V	25	50	100	μΑ	
CN I OW lovel input everent	I _{IL2}	V _{DD} = 3.0V, V _{IL} = 0V	0.2	1	2	- μΑ	
SN LOW-level input current	I _{IL3}	V _{DD} = 3.0V, V _{IL} = 2.5V	25	50	100		
AO1, AO2, AO3 LOW-level output	I _{OL1}	V _{DD} = 3.0V, V _{OL} = 1.5V	900	-	-		
current ³	I _{OL2}	V _{DD} = 3.0V, V _{OL} = 1.5V	10	-	-	- μΑ	
AO1, AO2, AO3 HIGH-level output	I _{OH1}	V _{DD} = 3.0V, V _{OH} = 1.5V	900	-	-		
current ³	I _{OH2}	V _{DD} = 3.0V, V _{OH} = 1.5V	10	-	-	μΑ	
T1 LOW-level output current	I _{OLT}	V _{DD} = 3.0V, V _{OL} = 3.0V	-	20	-	μA	
T1 HIGH-level output current	I _{OHT}	V _{DD} = 3.0V, V _{OH} = 0V	-	20	-	μA	
F output voltage ⁴	V _F	V_{DD} = 2.4V, output capacitance C_L = 50pF	0.8	-	-	V	
Built-in capacitance	CD			See series lineu	ip	pF	

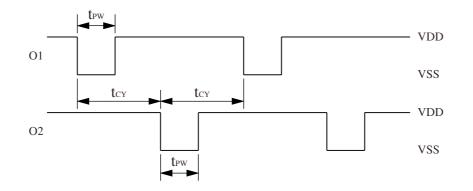
1. Measured using standard circuits.

2. R_L is the resistance of the motor coil connected between O1 and O2.

The rating varies depending on the device selected. Please refer to the series lineup table for details.
F output voltage is the difference voltage, with load capacitor C_L connected between F and VSS pins, between 0.5V_{DD} and the peak voltage.

Measurement Circuit

X'tal f_0 = 32.768kHz, C_I = 35k\Omega max, C_L = 12.5pF, C_0 = 1.3pF, C_1 = 2.6pF, C_G = 20pF, R_L = 400\Omega or 1kΩ

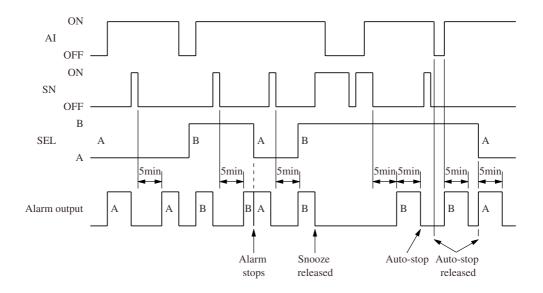

FUNCTIONAL DESCRIPTION

Motor Output

The CF5761 series comprise devices with different step movement and sweep movement cycles and pulse-widths.

Parameter	CF5761CA	CF5761EA	CF5761HA	CF5761LB	CF5761MB	CF5761NB
Active level	-	LOW	LOW	LOW	-	LOW
Movement cycle t _{CY} [s]	0.0625	1	10	1	0.0625	1
Pulsewidth t _{PW} [ms]	62.5	23.4	13.7	31.3	62.5	23.4
Movement	Sweep	Step	Step	Step	Sweep	Step

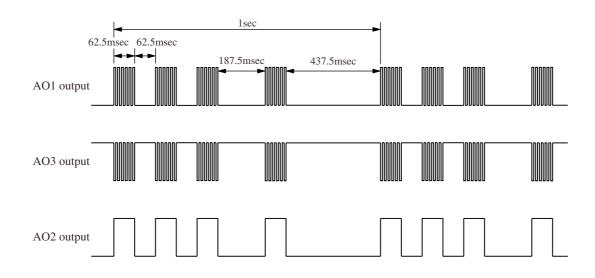
Step movement


Sweep movement

Alarm Control

The alarm is controlled using AI, SN, and SEL inputs. These pins have built-in chattering elimination circuits to prevent incorrect operation due to input chatter. The alarm output timing in response to these inputs is shown in the following figure.

Input	Function	Input chatter elimination
AI	Alarm control input. When AI is active, the specified alarm pattern is output on AO1, AO2 and AO3.	
SN	Snooze function control input. When the snooze input is accepted, the snooze time count begins. The snooze time is 300s.	$t_{ON} < 62.5$ ms, the input is not accepted. $t_{ON} > 125$ ms, the input is accepted. 62.5 ms $\le t_{ON} \le 125$ ms, the input state is
SEL	Alarm function select input. Selects one of two alarm patterns. When SEL is switched (from HIGH to LOW, or LOW to HIGH), the snooze state and auto-stop function is released, and the alarm signal is output.	undefined.


Alarm Modes

The CF5761 series provide several alarm modes and various alarm pattern outputs for a wide range of clock specifications, as described in the following table.

Alarm mode	Mode description	Output	Device
Simple alarm	A fixed alarm pattern is repeatedly rung (basic mode).	Motor bell Piezo-electric speaker Electromagnetic speaker	CF5761CA/EA/HA/LB/MB
Step tone modulated alarm	At fixed intervals, the alarm pattern changes, increasing the tone pitch with each step.	Motor bell	CF5761EA
Step volume modulated alarm	At fixed intervals, using a fixed alarm pattern, the output waveform duty changes, increasing the volume with each step.	Piezo-electric speaker Electromagnetic speaker	CF5761LB/MB/NB

The alarm pattern timing for each device in the CF5761 series is shown in the series lineup.

The CF5761HA has a special modulated alarm pattern when SEL is HIGH, as shown in the following figure. Outputs AO1 and AO3 have a frequency modulated alarm waveform output at the alarm fundamental frequency of 4kHz (4096Hz). The modulation pattern is output on AO2.

Power-ON Initialization

The CF5761 series are reset to the following conditions after power is applied.

■ AI, SN, SEL input state

These inputs are reset to LOW, except where the device has an active-LOW input in which case it is reset to HIGH. See the series lineup table.

■ O1, O2

In step movement devices, both outputs are HIGH and subsequent output occurs on O1. In sweep movement devices, O1 is reset LOW and O2 is reset HIGH, and output starts immediately.

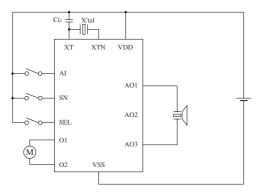
AO1, AO2, AO3

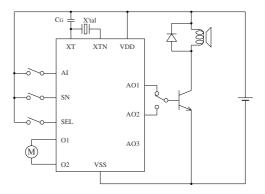
No output after reset. However, F output (CF5761EA: 32kHz on AO3) and clock output start immediately. Test mode

Test mode is released after reset. Note that after the oscillator starts, the input state of each pin is read and operation commences accordingly.

Test Function

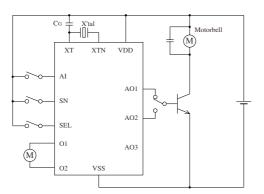
The CF5761 series have a test mode of operation where the output cycles are compressed. T1 has a built-in chattering elimination circuit to prevent incorrect operation due to input chatter. When T1 goes HIGH for an interval of 31.25ms or greater, test mode is invoked. When T1 becomes open circuit, normal mode operation resumes immediately and a 256Hz signal is output on T1.

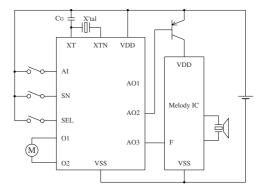

T1	Function
HIGH	Motor outputs: In step movement devices, the output runs 16 times faster with normal pulsewidth. In sweep movement devices, the output runs 16 times faster with 50% duty pulsewidth. Alarm outputs: Alarm operates at the same frequency with modulation frequency 16 times faster and step output changes 8 times faster (CF5761EA, LB, NB) or 4 times faster (CF5761MB). Snooze time, auto-stop time ¹ : 281.25ms (CF5761EA, LB, NB) or 562.5ms (CF5761MB) in step output alarm mode, and 140.625ms in other modes.
Open circuit	256Hz output (normal operation)


1. The auto-stop time applies only to CF5761 versions that support the auto-stop function. See the series lineup table.

TYPICAL APPLICATION CIRCUITS

Piezo-electric speaker


Electromagnetic speaker



Motor bell

Please pay your attention to the following points at time of using the products shown in this document.

NPC

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0016BE 2006.04