3.3 V, 106.25 MHz / 212.5 MHz LVPECL Clock Oscillator

The NBXDBA012 dual frequency crystal oscillator (XO) is designed to meet today's requirements for 3.3 V LVPECL clock generation applications. The device uses a high Q fundamental crystal and Phase Lock Loop (PLL) multiplier to provide selectable 106.25 MHz or 212.5 MHz, ultra low jitter and phase noise LVPECL differential output. This device is a member of ON Semiconductor's PureEdge™ clock family that provides accurate and precision clock solutions.

Available in 5 mm x 7 mm SMD (CLCC) package on 16 mm tape and reel in quantities of 1,000.

Features

- LVPECL Differential Output
- Uses High Q Fundamental Mode Crystal and PLL Multiplier
- Ultra Low Jitter and Phase Noise 0.4 ps (12 kHz 20 MHz)
- Selectable Output Frequency 106.25 MHz / 212.5 MHz
- Frequency Stability ±50 PPM
- Hermetically Sealed Ceramic SMD Package
- RoHS Compliant
- Operating Range 3.3 V ±10%
- This is a Pb-Free Device

Applications

- 1X and 2X Fiber Channel
- Host Bus Adapter

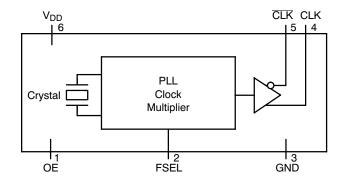


Figure 1. Simplified Logic Diagram

ON Semiconductor®

http://onsemi.com

6 PIN CLCC TBD SUFFIX CASE 848AB

MARKING DIAGRAM

DBA012 = NBXDBA012 (±50 PPM) A = Assembly Location

A = Assembly Lo WL = Wafer Lot

YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping [†]
NBXDBA012LN1TAG	CLCC-6 (Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

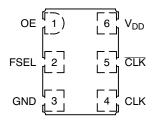


Figure 2. Pin Connections (Top View)

Table 1. PIN DESCRIPTION

Pin No.	Pin No. Symbol I/O		Description		
1	OE	LVTTL/LVCMOS Control Input	Output Enable Pin. When left floating pin defaults to logic HIGH and output is active. See OE pin description Table 2.		
2	FSEL	LVTTL/LVCMOS Control Input	Output Frequency Select Pin. Pin will default to logic HIGH when left open. See Output Frequency Select pin description Table 3.		
3	GND	Power Supply	Ground 0 V.		
4	CLK	LVPECL Output	Non-Inverted Clock Output. Typically loaded with 50 Ω receiver termination resistor to V_{TT} = V_{DD} – 2 V .		
5	CLK	LVPECL Output	Non-Inverted Clock Output. Typically loaded with 50 Ω receiver termination resistor to V_{TT} = V_{DD} – 2 V .		
6	V_{DD}	Power Supply	Positive power supply voltage. Voltage should not exceed 3.3 V $\pm 10\%$.		

Table 2. OUTPUT ENABLE TRI-STATE FUNCTION

OE Pin	Output Pin
Open	Active
HIGH Level	Active
LOW Level	High Z

Table 3. OUTPUT FREQUENCY SELECT

FSEL Pin	Output Frequency (MHz)
Open (pin will float high)	106.25
HIGH Level	106.25
LOW Level	212.5

Table 4. ATTRIBUTES

Characteristic		Value		
ESD Protection	Human Body Model Machine Model	2 kV 200 V		
Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test				

 $^{1. \ \ \}text{For additional Moisture Sensitivity information, refer to Application Note AND 8003/D}.$

Table 5. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{DD}	Positive Power Supply	GND = 0 V		4.6	V
l _{out}	LVPECL Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-55 to +120	°C
T _{sol}	Wave Solder	See Figure 6		260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 6. DC CHARACTERISTICS (V_{DD} = 3.3 V \pm 10%, GND = 0 V, T_A = -40°C to +85°C)

Symbol	Characteristic	Conditions	Min.	Тур.	Max.	Units
I _{DD}	Power Supply Current (Note 2)			80	95	mA
V _{IH}	OE and FSEL Input HIGH Voltage		2000		V_{DD}	mV
V _{IL}	OE and FSEL Input LOW Voltage		GND - 300		800	mV
Іін	Input HIGH Current OE FSEL		-100 -100		+100 +100	μΑ
I _{IL}	Input LOW Current OE FSEL		-100 -100		+100 +100	μΑ
V _{OH}	Output HIGH Voltage (Note 2)	V _{DD} = 3.3 V	V _{DD} -1145 2155		V _{DD} -895 2405	mV
V _{OL}	Output LOW Voltage (Note 2)	V _{DD} = 3.3 V	V _{DD} -1945 1355		V _{DD} -1600 1700	mV
V _{OUTPP}	Output Voltage Amplitude (Note 2)			780		mV

NOTE: NBX circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

Table 7. AC CHARACTERISTICS (V_{DD} = $3.3~V \pm 10\%$, GND = 0~V, T_A = -40° C to $+85^{\circ}$ C)

Symbol	Characteristic	Conditions	Min.	Тур.	Max.	Units
f _{CLKOUT}	Output Clock Frequency	FSEL = HIGH		106.25		MHz
		FSEL = LOW		212.5		
Δf	Frequency Stability	10 Years Aging			±50	ppm
Φ_{NOISE}	Phase-Noise Performance	100 Hz of Carrier		-103/-90		dBc/Hz
	f _{CLKout} = 106.25 MHz/212.5 MHz	1 kHz of Carrier		-125/-122		dBc/Hz
		10 kHz of Carrier		-135/-127		dBc/Hz
		100 kHz of Carrier		-137/-128		dBc/Hz
		1 MHz of Carrier		-137/-131		dBc/Hz
		10 MHz of Carrier		-162/-159		dBc/Hz
t _{jit} (Φ)	RMS Phase Jitter	12 kHz to 20 MHz		0.4	0.9	ps
t _{jitter}	Cycle to Cycle, RMS	1000 Cycles		3	10	ps
	Cycle to Cycle, Peak-to-Peak	1000 Cycles		15	35	ps
	Period, RMS	10,000 Cycles		2	5	ps
	Period, Peak-to-Peak	10,000 Cycles		10	25	ps
t _{OE/OD}	Output Enable/Disable Time				200	ns
t _{DUTY_CYCLE}	Output Clock Duty Cycle (Measured at Cross Point)		48	50	52	%
t _R	Output Rise Time (20% and 80%)			150	550	ps
t _F	Output Fall Time (80% and 20%)			150	550	ps
t _{start}	Start-up Time			1	5	ms
	Aging	1 st Year			3	ppm
		Every Year After 1st			1	ppm

NOTE: NBX circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained.

^{2.} Measurement taken with outputs terminated with 50 ohm to $\ensuremath{\text{V}_{\text{DD}}\text{--}2}\ \ensuremath{\text{V}}.$

Table 8. RELIABILITY COMPLIANCE

Parameter	Standard	Method
Shock	Mechanical	MIL-STD-833, Method 2002, Condition B
Solderability	Mechanical	MIL-STD-833, Method 2003
Vibration	Mechanical	MIL-STD-833, Method 2007, Condition A
Solvent Resistance	Mechanical	MIL-STD-202, Method 215
Resistance to Soldering Heat	Mechanical	MIL-STD-203, Method 210, Condition I or J
Thermal Shock	Environment	MIL-STD-833, Method 1001, Condition A
Moisture Resistance	Environment	MIL-STD-833, Method 1004

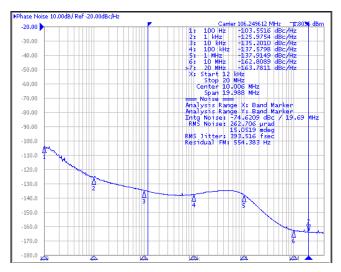
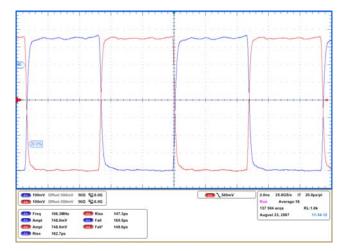
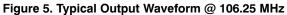




Figure 3. Typical Phase Noise Plot @ 106.25 MHz

Figure 4. Typical Phase Noise Plot @ 212.5 MHz

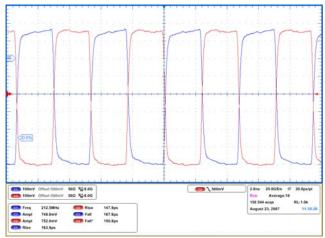


Figure 6. Typical Output Waveform @ 212.5 MHz

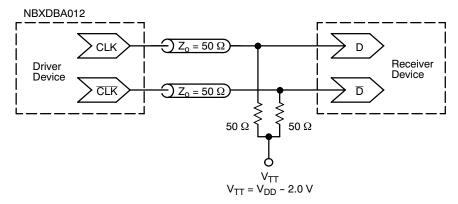


Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

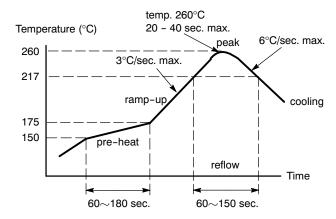
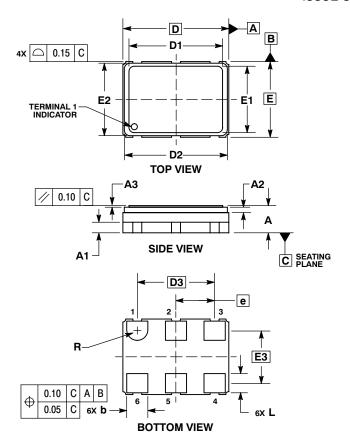
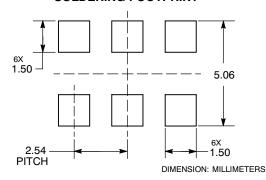



Figure 8. Recommended Reflow Soldering Profile

PACKAGE DIMENSIONS


6 PIN CLCC, 7x5, 2.54P CASE 848AB-01 **ISSUE O**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- 2. CONTROLLING DIMENSION: MILLIMETERS

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	1.70	1.80	1.90	
A1		0.70 REF		
A2		0.36 REF		
A3	0.08	0.10	0.12	
b	1.30	1.40	1.50	
D		7.00 BSC		
D1	6.17	6.20	6.23	
D2	6.66	6.81	6.96	
D3		5.08 BSC		
E		5.00 BSC		
E1	4.37	4.40	4.43	
E2	4.65	4.80	4.95	
E3	3.49 BSC			
е		2.54 BSC		
L	1.17 1.27 1.37			
R	0.70 REF			

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered raderians of semiconductor Components industries, LC (SCILLC) - Scillute services in english to make changes without further induce to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative