

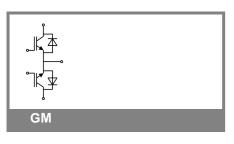
SEMITOP[®] 2

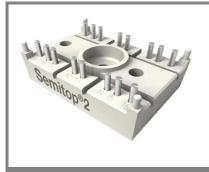
IGBT Module

SK 60GM123

Preliminary Data

Features


- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise	e specified
Symbol	Conditions	Values	Units	
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	60	А
		T _s = 80 °C	40	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse D	Diode		·	
I _F	T _j = 150 °C	T _s = 25 °C	60	А
		T _s = 80 °C	40	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		100	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = V, V_{CE} = V_{CES}$	T _j = °C				mA	
V _{CE0}		T _j = °C				V	
r _{CE}	V _{GE} = V	T _j = °C				mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,5	3	V	
· · /		T _j = 125°C _{chiplev} .		3,1	3,7	V	
Cies				3,3		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz				nF	
C _{res}						nF	
t _{d(on)}				40		ns	
t _r	R _{Gon} = 23 Ω	V _{CC} = 600V		45		ns	
E _{on}		I _{Cnom} = 50A		7		mJ	
t _{d(off)}	R_{Goff} = 23 Ω	T _i = 125 °C		300		ns	
t _f		V _{GE} =±15V		45		ns	
E _{off}				5,2		mJ	
R _{th(j-s)}	per IGBT				0,6	K/W	

SEMITOP[®] 2

IGBT Module

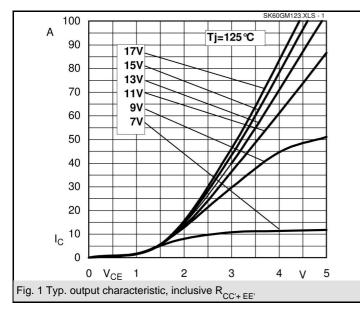
SK 60GM123

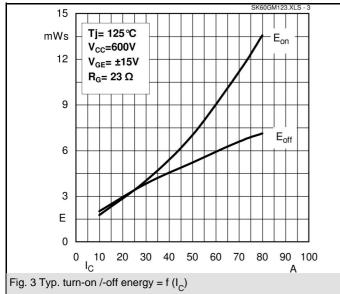
Preliminary Data

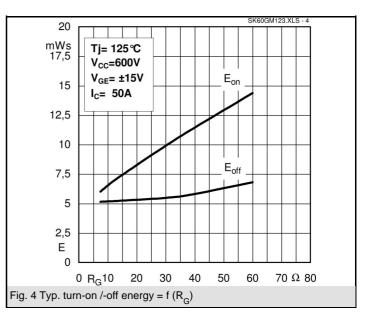
Features

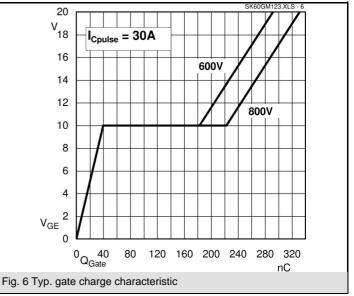
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- High short circuit capability
- Low tail current with low temperature dependence

Typical Applications


- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	oide	·					
$V_F = V_{EC}$	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		T _j = 125 °C _{chiplev.}		1,8		V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		16	22	mΩ	
I _{RRM}	I _{Fnom} = 30 A	T _i = 125 °C		16		Α	
Q _{rr}	di/dt = 400 A/µs			5,4		μC	
E _{rr}	V _{CC} = 600V			2,4		mJ	
$R_{th(j-s)D}$	per diode				0,7	K/W	
M _s	to heat sink M1				2	Nm	
w				21		g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

