

3-channel Video Buffer with Built-in Wideband Filters with Filter Through Function

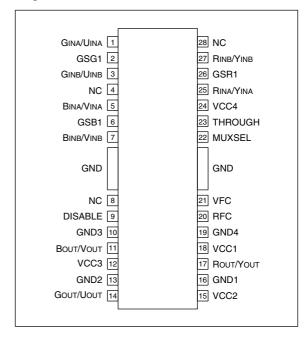
OVERVIEW

The SM5301BS is a video filter LSI with buffered outputs for VESA-standard ATSC digital TV. The filter employs a 5-order Butterworth lowpass filter configuration. The filter characteristics have been optimized for minimal overshoot and flat group delay, it has a variable cutoff frequency and guaranteed output buffer-stage channel gain difference and phase difference values. It has also filter through mode.

FEATURES

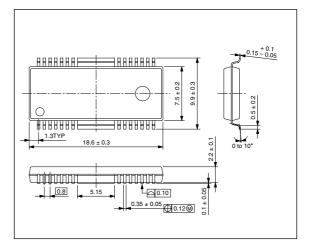
- Supply voltage: 5V ± 10%
- VESA-standard ATSC digital TV RGB/YUV video filters
- RGB/YUV switching multiplexer function
- Synctip clamp input
- 0dB, 6dB gain switching function (input-to-output AC signal gain)
- Channel-to-channel gain difference: 0.5dB (± 5% supply voltage variation)
- Channel-to-channel phase difference: 3.5 degree
- Output signal harmonic distortion (all channels):
 1.5%
- Cutoff frequency: 5 to 37MHz variable
- Filter through mode (passband frequency is 46MHz, when gain is 6dB)
- Package: 28-pin HSOP (Pb free)

APPLICATIONS

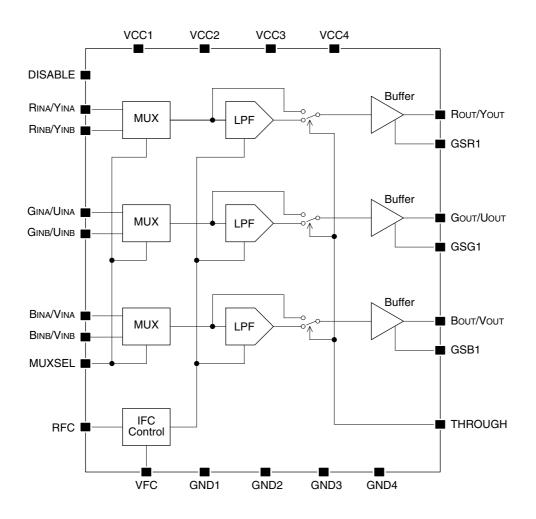

- Set-top boxes
- Digital television
- DVD players

ORDERING INFORMATION

Device	Package
SM5301BS	28-pin HSOP


PINOUT

(Top view)



PACKAGE DIMENSIONS

(Unit: mm)

BLOCK DIAGRAM

Note. Power supply pin distinction VCC1, GND1: R/Y block

VCC2, GND2: G/U block

VCC3, GND3: B/V block

VCC4, GND4: IFCCONT block, and logic input control block

SM5301BS

PIN DESCRIPTION

Number	Name	I/O ¹	Description
1	G _{INA} /U _{INA}	I	Analog G _{INA} or U _{INA} signal input
2	GSG1	lpu	G _{OUT} /U _{OUT} output buffer gain set input
3	G _{INB} /U _{INB}	I	Analog G _{INB} or U _{INB} signal input
4	NC	-	No connection (leave open or connect to ground)
5	B _{INA} /V _{INA}	ı	Analog B _{INA} or V _{INA} signal input
6	GSB1	lpu	B _{OUT} /V _{OUT} output buffer gain set input
7	B _{INB} /V _{INB}	I	Analog B _{INB} or V _{INB} signal input
8	NC	_	No connection (leave open or connect to ground)
9	DISABLE	lpd	Power save function L: Enable H: Disable (Output pins: R _{OUT} /Y _{OUT} , G _{OUT} /U _{OUT} , and B _{OUT} /V _{OUT} are high impedance.)
10	GND3	-	Analog ground
11	B _{OUT} /V _{OUT}	0	B/V signal output
12	VCC3	-	Analog 5V supply
13	GND2	-	Analog ground
14	G _{OUT} /U _{OUT}	0	G/U signal output
15	VCC2	-	Analog 5V supply
16	GND1	-	Analog ground
17	R _{OUT} /Y _{OUT}	0	R/Y signal output
18	VCC1	_	Analog 5V supply
19	GND4	_	Analog ground
20	RFC	_	LPF (lowpass filter) cutoff frequency setting resistor connection
21	VFC	I	LPF (lowpass filter) cutoff frequency setting voltage input
22	MUXSEL	lpd	Input select signal L: \times_{INA} pin select H: \times_{INB} pin select
23	THROUGH	lpd	Filter mode select pin L: Filter mode H: Filter through mode
24	VCC4	_	Analog 5V supply
25	R _{INA} /Y _{INA}	I	Analog R _{INA} or Y _{INA} signal input
26	GSR1	lpu	R _{OUT} /Y _{OUT} output buffer gain set input
27	R _{INB} /Y _{INB}	I	Analog R _{INB} or Y _{INB} signal input
28	NC	_	No connection (leave open or connect to ground)

 $^{1.\} l: input\ pin,\ lpd: input\ pin\ with\ pull-down\ resistor,\ lpu: input\ pin\ with\ pull-up\ resistor,\ o: output\ pin$

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{CC}	- 0.3 to 7.0	٧
Supply voltage deviation ¹	ΔV_{CC}	± 0.1	٧
Storage temperature range	T _{stg}	- 55 to + 125	°C
Power dissipation 1 ²	P _{D1}	1.0	W
Power dissipation 2 ³	P _{D2}	0.9	W
Junction temperature	T _j	125	°C

Supply voltage deviation of each power supply pin. Supply the power to VCC1 to VCC4 pin, simultaneously.

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{CC}	4.5 to 5.5	V
Operating ambient temperature	Ta	– 25 to 85	°C

^{2.} When mounted on a substrate: mounted on a 111 \times 80 \times 1.6mm glass-epoxy substrate with 90% copper (Cu) wiring factor, 0m/s air flow, θ jc = 52°C/W, and Ta = -25 to 70 °C.

When mounted on a substrate: mounted on a 111 × 80 × 1.6mm glass-epoxy substrate with 90% copper (Cu) wiring factor, 0m/s air flow, θjc = 52°C/W, and Ta = 70 to 80 °C.

Electrical Characteristics

Input and Output Characteristics

 V_{CC} = 4.5 to 5.5V, Ta = -25 to $85^{\circ}C$ unless otherwise noted. Refer to "Measurement Circuit".

Davameter	Cumbal	Condition	Rating			Heit	Test
Parameter	Symbol	Condition	min	typ	max	Unit	level
Supply current 1	I _{CC1}	$V_{CC} = 5.5$ V, RFC = 820 Ω to GND, VFC = 0.2V, DISABLE = "L"	70	100	130	mA	I
Supply current 2	I _{CC2}	$V_{CC} = 5.5V$, RFC = 820Ω to GND, VFC = $1.6V$, DISABLE = "L"	90	120	160	mA	I
Supply current 3	I _{CC3}	V_{CC} = 5.5V, RFC = 820 Ω to GND, VFC = 0.2V, DISABLE = "H"	1	2.5	5	mA	I
Output gain error 1	ΔA_{V1}	Gain = 0dB/6dB, V _{CC} = 4.75 to 5.25V, Ta = 0 to 70°C	-	-	± 0.5	dB	I
Output gain error 2	ΔA_{V2}	Gain = 0dB/6dB, Ta = - 25 to 85°C	-	_	± 1	dB	I
Maximum output voltage	V _{out}	$RL = 75\Omega$ to GND, $Gain = 6dB$	2.4	-	-	Vp-p	I
DISABLE-mode input impedance (pull-down)	R _{IN1}	R _{INA} /Y _{INA} , R _{INB} /Y _{INB} , G _{INA} /U _{INA} , G _{INB} /U _{INB} , B _{INA} /V _{INA} , B _{INB} /V _{INB}	40	50	60	kΩ	I
Clamp response time	T _{clamp}	Time for 90% output signal change for 10mV input signal, $C_{IN} = 0.1 \mu F$	-	8	-	ms	II
Maximum input amplitude	VI	AC coupling input, Gain = 6dB	-	-	1.4	Vp-p	I
Maximum overshoot	V _{OS}	2Vp-p pulse output	-	10	-	%	II
Maximum load capacitance	CL	B _{OUT} /V _{OUT} , G _{OUT} /U _{OUT} , R _{OUT} /Y _{OUT}	-	-	15	pF	II
Output drive load	RL	one load unit = 150Ω	-	-	2	load	I
Channel-to-channel gain difference	dG	Between R/G/B, fc/2 [Hz]	-	-	0.5	dB	I
Channel-to-channel phase difference	dφ	Between R/G/B, fc/2 [Hz]	-	3.5	-	degree	II
Output harmonic distortion	T _{HD}	Vout = 2Vp-p, f = 1MHz	-	1.5	-	%	II
Power supply rejection ratio	PSRR	V _{CC} = 0.5Vp-p, f = 100kHz	-	35	-	dB	II
Output short-circuit current	I _{SC}		-	-	100	mA	II
Logic HIGH-level input voltage 1	V _{IH1}	DISABLE, MUXSEL, THROUGH	2.5	-	-	٧	I
Logic LOW-level input voltage 1	V _{IL1}	DISABLE, MUXSEL, THROUGH	-	-	1.0	٧	I
Logic HIGH-level input voltage 2	V _{IH2}	GSB1, GSG1, GSR1	V _{CC} - 0.5	-	-	٧	I
Logic LOW-level input voltage 2	V _{IL2}	GSB1, GSG1, GSR1	-	-	0.5	٧	I
Logic pull-up resistance	R _{IN2}	GSB1, GSG1, GSR1	32	40	48	kΩ	I
Logic pull-down resistance	R _{IN3}	DISABLE, MUXSEL, THROUGH	40	50	60	kΩ	I

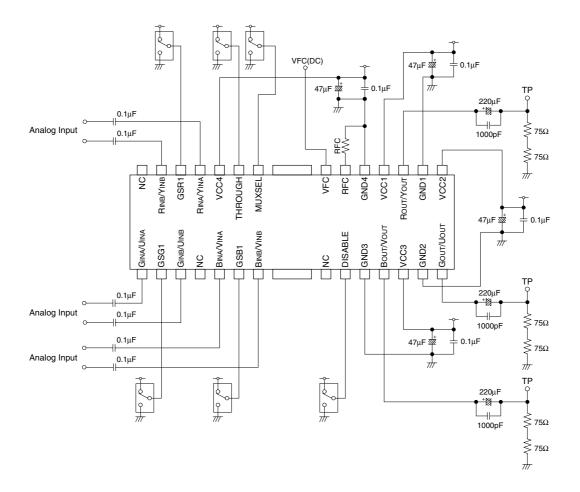
Filter Mode Characteristics

 V_{CC} = 4.5 to 5.5V, Ta = - 25 to 85°C, THROUGH = Low, V_{I} = 0.7Vp-p unless otherwise noted. Refer to "Measurement Circuit".

Devemates	Combal	Condition			Rating		1114	Test	
Parameter	Symbol				typ	max	Unit	level	
Cutoff frequency adjustment range	F _C	Ta=25°C (see Figure 1–1)		5.8	-	37	MHz	I	
Cutoff frequency error	ΔF_{C}	$Ta = 25^{\circ}C, V_{CC} = 5$.0V	-	-	± 20	%	I	
4fc attenuation	f _{SB}	fIN ≥ 4fc		-	50	-	dB	II	
Crosstalk	X _{TALK}	Between 2 channels with input 0.5Vp-p 1MHz		-	- 47	-	dB	II	
Multiplexer crosstalk	X _{TALK}	Between MUX A–B with input 0.5Vp-p 1MHz		-	- 49	-	dB	II	
Channel-to-channel group delay	T _{PD}	Each input = 500kHz		-	10	-	ns	II	
	ΔТ	ΔТ	Fc = 6.7MHz	to 3.58MHz	-	9	-	ns	II
	∆T _{PD1}	(500kHz)	to 4.43MHz	-	15	-	ns	II	
		Fc = 24MHz PD2 (500kHz)	to 3.58MHz	-	1	-	ns	II	
Group delay variation	ΔT_{PD2}		to 4.43MHz	-	1	-	ns	II	
		,	to 10MHz	-	2	-	ns	II	
	A.T.	ΔT_{PD3} Fc = 36MHz (1MHz)	to 10MHz	-	0.5	-	ns	II	
Δ1 _{PD3}	Δ1 _{PD3}		to 30MHz	-	5	-	ns	II	
VFC input voltage range	VFC	Filter mode, through mode		0.2	-	1.6	٧	1	

Through Mode Characteristics

 V_{CC} = 5.0V, Ta = - 25 to 85°C, THROUGH = High, V_{I} = 0.7Vp-p unless otherwise noted. Refer to "Measurement Circuit".


Parameter	Symbol	Condition	Rating			Unit	Test level
raiametei	Symbol Condition		min typ		max	Oilit	
Cutoff frequency (6dB)	F _C	Ta=25°C, Gain = 6dB, VFC = 1.6V, RFC=820 Ω	42	46	-	MHz	I
Cutoff frequency (0dB)	F _C	Ta=25°C, Gain = 0dB, VFC = 1.6V, RFC=820 Ω	39	43	-	MHz	I
Crosstalk	X _{TALK}	Between 2 channels with input 0.5Vp-p 1MHz	-	- 60	-	dB	II
Multiplexer crosstalk	X _{TALK}	Between MUX A–B with input 0.5Vp-p 1MHz	-	- 60	-	dB	II

Test level

I: 100% of products tested at Ta = +25°C.

II: Guaranteed as result of design and characteristics evaluation.

Measurement Circuit

FUNCTION DESCRIPTION

Output Buffer Gain Control

GS×1 pin sets the output buffer gain.

GSR1, GSG1, GSB1	Gain [dB]
Low	0
High or Open	6

Cutoff Frequency Control (RFC and VFC)

Cutoff frequency (fc) can be controlled by control current Ifc (= VFC/RFC) shown as Figure 1-1. And relation of fc vs VFC at RFC = 680Ω , 820Ω , $1k\Omega$ is shown as Figure 1-2.

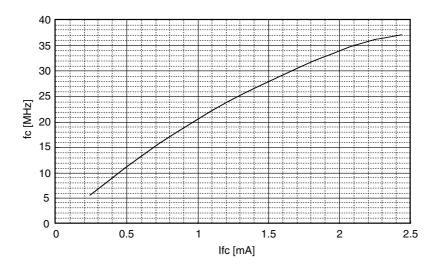


Figure 1-1. fc vs. Ifc

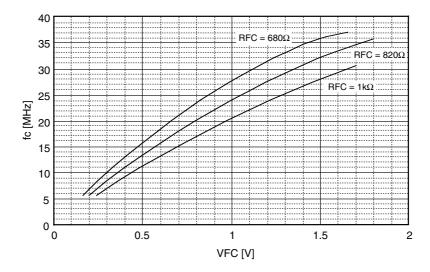


Figure 1-2. fc vs. VFC

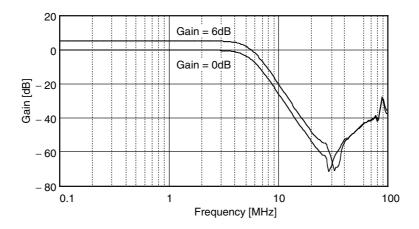


Figure 2-1. Filter characteristic (RFC = 820Ω , VFC = 0.2V)

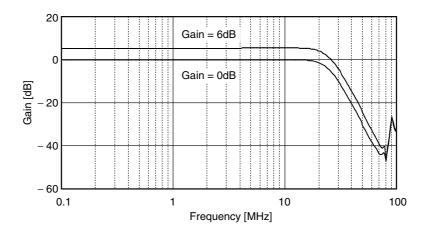


Figure 2-2. Filter characteristic (RFC = 820Ω , VFC = 1.0V)

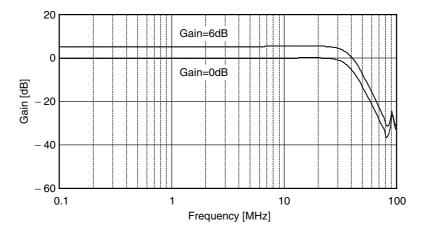


Figure 2-3. Filter characteristic (RFC = 820Ω , VFC = 1.6V)

Filter Through Mode

THROUGH pin sets the through mode. It functions only output buffer, and bypasses the LPF.

THROUGH	Filter mode/Through mode
Low or Open	Filter mode
High	Through mode

Frequency characteristics of through mode is shown as Figure 3 (VFC = 1.6V, RFC = 820Ω).

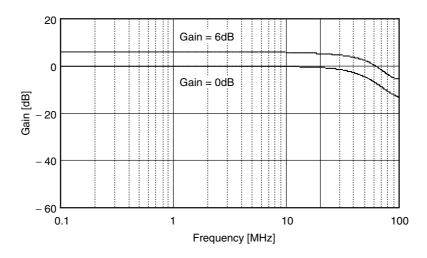


Figure 3. Through mode frequency characteristic

Analog Signal Input

Input Channel Selection

MUXSEL pin sets the analog input channel \times_{INA} or \times_{INB} .

MUXSEL	Analog input channel
Low or Open	× _{INA}
High	× _{INB}

Selected pins are connected to the internal synctip clamp circuit. Clamp voltage is 2.3V (typ).

BIAS Input

When input signal is color difference signal of component signal, BIAS input is suitable better than CLAMP input. Connect the resistors as Figure 4, it functions BIAS input.

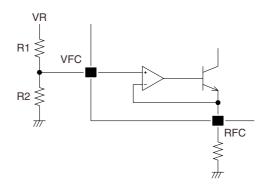
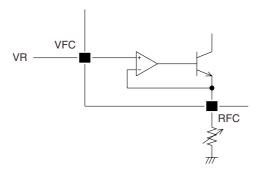
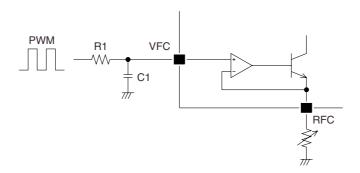


Figure 4. Resistor connection for BIAS input

Adjusting the Cutoff Frequency


Constant-voltage control 1

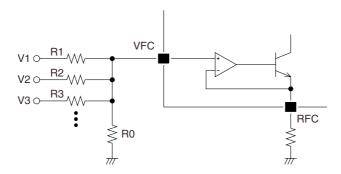
Cutoff frequency control using a reference voltage VR generated by voltage divider formed by R1 and R2.


Constant-voltage control 2

Cutoff frequency control by adjusting the resistance connected to RFC.

PWM control

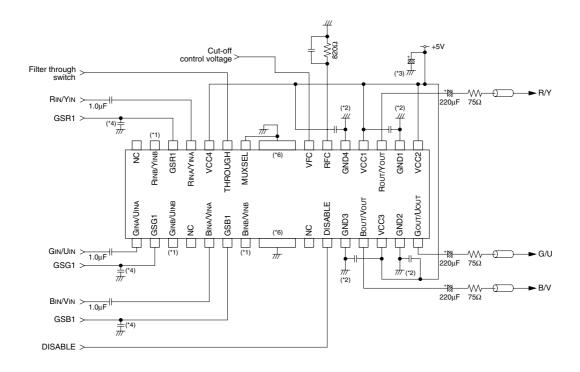
Cutoff frequency control by smoothing the PWM signal, using R1 and C1, input to VFC.


When VFC = 0.2V
$$V_{DD}$$
 = 3.3V, 6% duty drive V_{DD} = 5.0V, 4% duty drive

When VFC = 1.6V
$$V_{DD}$$
 = 3.3V, 48% duty drive V_{DD} = 5.0V, 32% duty drive

Note: The resistor connected to RFC can affect the cutoff frequency response, so a high-precision component should be used. It is recommended to set the RC filter cutoff frequency to < 1/100fc of the PWM waveform frequency.

Resistor switch control


The VFC voltage can be controlled using multi-logic voltage levels switching inputs to a voltage divider resistor network.

The VFC voltage is determined by the logic voltage (V1, V2, V3) and the corresponding voltage divider resistor network.

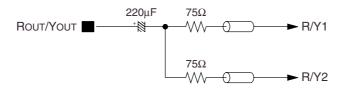
TYPICAL APPLICATION CIRCUITS

ATSC Digital TV Application

- (*1) Pins without an input signal, set by NUXSEL, should be left open or tied to GND.
- (*2) Connect $4 \times 0.1 \mu F$ capacitor between the supply pins close to the IC.
- (*3) Connect a 47µF capacitor between the supply pins close to the IC.
- (*4) Connect a capacitor if an error occurs due to external noise for GSR1, GSG1, GSB1 pins. Also, if open-circuit, the internal impedance and external capacitance (C) form an RC network. When power is applied, the open-circuit potential rises with time constant $\tau = C \times 10k$ (sec).
- (*5) Printed circuit board supply wiring
 - If the supply is used for other digital circuits, there is a possibility that noise will be introduced. Accordingly, these circuits should be connected to the application's analog supply.
 - Ground-plane wiring should be performed, as much as possible, to provide low GND line impedance.
 - If ground-plane wiring up to the GND pins is difficult, the ground plane should be as close to the IC as possible with a separate wire to each GND pin.
- (*6) The tab (radiation fin) between 7 pin and 8 pin and between 21 pin and 22 pin should be connected to the large ground plane as much as possible for radiation.

Input Capacitor and High Pass Filter Cutoff Frequency

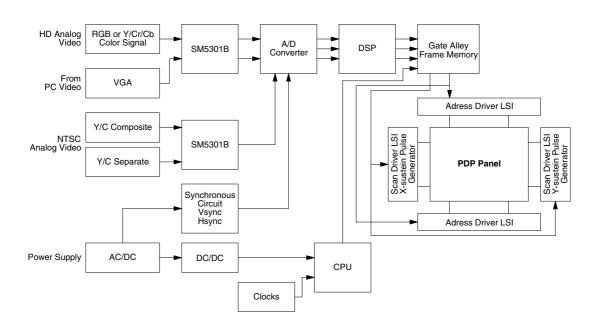
The capacitor connected to pins R_{INA}/Y_{INA} , R_{INB}/Y_{INB} , G_{INA}/U_{INB} , G_{INB}/U_{INB} , B_{INA}/V_{INA} , and B_{INB}/V_{INB} forms a highpass filter (HPF) with the internal impedance.


The HPF cutoff frequency is given by the following equation.

$$fc = \frac{1}{2\pi CR}$$

(C: input capacitance, R: signal input impedance = $9.3k\Omega$ (typ))

2-load Output Connection


 R_{OUT}/Y_{OUT} output 2-load connection (similarly for G_{OUT}/U_{OUT} , B_{OUT}/V_{OUT} outputs)

Digital TV Receiver and HDTV Decoder Box

Plasma Display Panel

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0208BE 2006.04