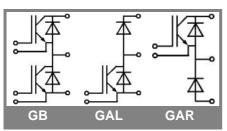

SEMiX 402GB066HDs

Trench IGBT Modules

SEMiX 402GB066HDs SEMiX 402GAL066HDs SEMiX 402GAR066HDs

Target Data

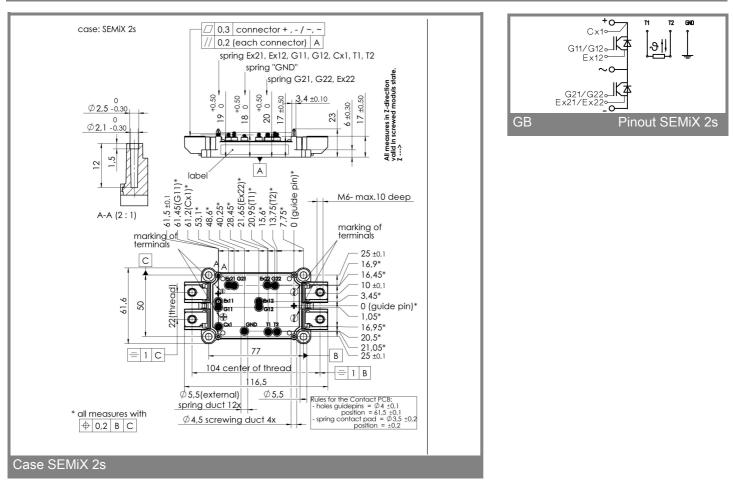
Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient

Typical Applications

- Matrix Converter
- Resonant Inverter
- Current Source Inverter

Remarks


- Case temperature limited to T_C= 125°C max.
- Product reliability results are valid for T_i=150°C
- SC data: $t_p \le 6 \ \mu s$; $V_{GE} \le 15 \ V$; $T_j = 150^{\circ}$ C; $V_{CC} = 360$ V, use of soft RG necessary
- take care of over-voltage caused by stray inductance

Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		600	V					
I _C	T _c = 25 (80) °C, T _i = 150 °C	490 (340)	А					
I _C	$T_{c} = 25 (80) °C, T_{i} = 175 °C$	530 (410)	А					
I _{CRM}	$t_p = 1 \text{ ms}$	800	А					
V _{GES}		± 20	V					
T _j , (T _{stg})		- 40 + 175 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C, T _i = 150 °C	380 (250)	А					
I _F	T _c = 25 (80) °C, T _i = 175 °C	420 (310)	А					
I _{FRM}	$t_p = 1 \text{ ms}$	800	А					
I _{FSM}	t_p = 10 ms; sin.; T_j = 25 °C	1800	А					

Characteristics T _{case} = 25°C, unless otherwise spec					
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 3,2 \text{ mA}$		5,8		V
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 () °C$			0,1	mA
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	1 (0,9)	V
r _{CE}	V _{GE} = 15 V, T _j = 25 (150) °C		1,4 (2,15)	2,25 (3)	mΩ
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V,		1,45 (1,7)	1,9 (2,1)	V
	T _j = 25 (150) °C, chip level				
C _{ies}	under following conditions				nF
C _{oes}	V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz				nF
C _{res}					nF
L _{CE}					nH
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ
t _{d(on)} /t _r	V _{CC} = 300 V, I _{Cnom} = 400 A				ns
t _{d(off)} /t _f	$V_{GE} = \pm 15V$				ns
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = 8 \Omega, T_j = 150 \ ^{\circ}C$		11 (17)		mJ
Inverse D	liode	·			
$V_F = V_{EC}$	I _{Fnom} = 400 A; V _{GE} = 0 V; T _j = 25 (150 °C, chip level)	1,4 (1,4)	1,6	V
V _(TO)	T _i = 25 (150) °C		1 (0,85)	1,1	V
r _T	T _j = 25 (150) °C		1 (1,4)	1,25	mΩ
I _{RRM}	I _{Fnom} = 400 A; T _j = 25 (150) °C				А
Q _{rr}	di/dt = A/µs				μC
E _{rr}	V _{GE} = -15 V				mJ
Thermal (characteristics				
R _{th(j-c)}	per IGBT			0,11	K/W
R _{th(j-c)D}	per Inverse Diode			0,2	K/W
R _{th(j-c)FD}	per FWD				K/W
R _{th(c-s)}	per module		0,045		K/W
Temperat	ture sensor				
R ₂₅	T _c = 25 °C		5 ±5%		kΩ
B _{25/85}	R ₂ =R ₁ exp[B(1/T ₂ -1/T ₁)] ; T[K];B		3420		к
Mechanic	al data	1			
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
w			250		g

SEMiX 402GB066HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.