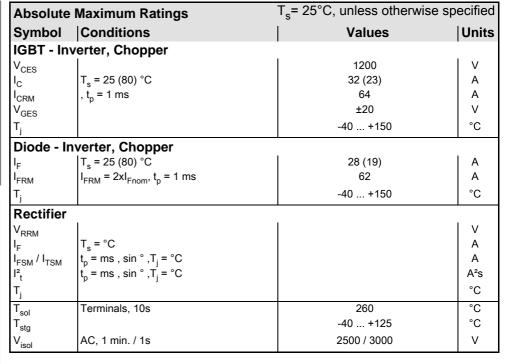

SK 25 GD 126 ET

SEMITOP[®] 3

3-phase bridge inverter

SK 25 GD 126 ET

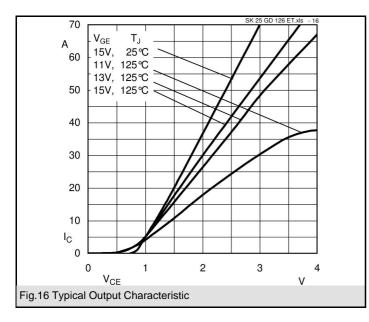

Preliminary Data

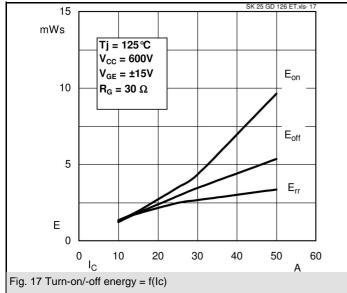
Features

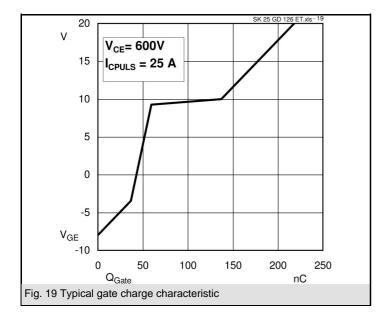

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench technology IGBT
- CAL High Density FWD
- Integrated NTC temperature sensor

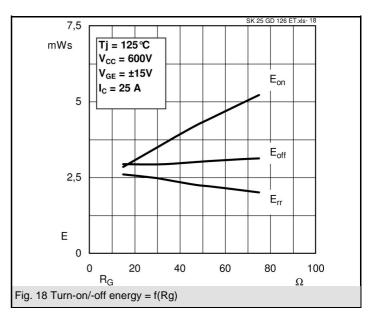
Typical Applications

Inverter

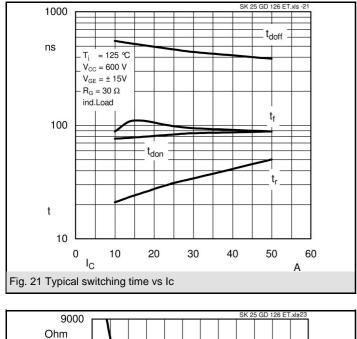


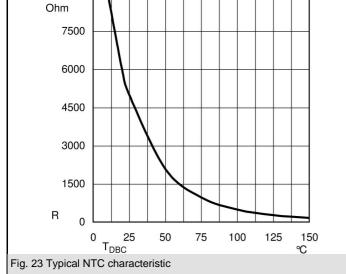

Characteristics		T _s = 25°C	T_s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT - In	verter, Chopper					
V _{CEsat}	I _C = 25 A, T _i = 25 (125) °C		1,7 (2,2)	2,1	V	
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	5	5,8	6,5	V	
V _{CE(TO)}	T _i = 25 °C (125) °C		1 (0,9)	1,2	V	
r _T	T _j = 25 °C (125) °C		28 (44)	36	mΩ	
Cies	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		1,9		nF	
C _{oes}	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		0,4		nF	
C _{res}	V _{CE} = 25 V _{GE} = 0 V, f = 1 MHz		0,4		nF	
R _{th(j-s)}	per IGBT			1,2	K/W	
t _{d(on)}	under following conditions		85		ns	
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns	
t _{d(off)}	I _C = 25 A, T _j = 125 °C		430		ns	
t _f	$R_{Gon} = R_{Goff} = 25 \Omega$		90		ns	
Eon	inductive load		3,3		mJ	
E _{off}			3,1		mJ	
Diode - Ir	verter, Chopper					
V _F = V _{EC}	I _F = 25 A, T _i = 25 (125) °C		1,8 (1,8)		V	
V _(TO)	T _i = 25 °C (125) °C		1 (0,8)	1,1	V	
r _T	T _j = 25 °C (125) °C		32 (40)	42	mΩ	
R _{th(j-s)}	per diode			1,9	K/W	
I _{RRM}	under following conditions		31		Α	
Q _{rr}	I _F = 25 A, V _R = 600 V		5		μC	
E _{rr}	V _{GE} = 0 V, T _i = 125 °C		2,1		mJ	
	di _{F/dt} = 950 A/µs					
Diode red	ctifier					
V _F	I _F = A, T _i = 25 °C				V	
V _(TO)	$T_i = °C$				V	
r _T	T _i = °C				mΩ	
R _{th(j-s)}	per diode				K/W	
	tur sensor				•	
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω	
Mechanio	cal data					
W			30		g	
Ms	Mounting torque			2,5	Nm	

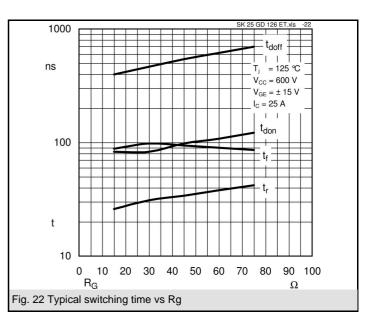


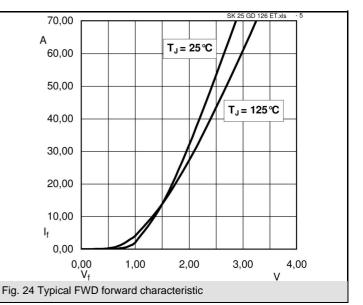

GD - ET

SK 25 GD 126 ET

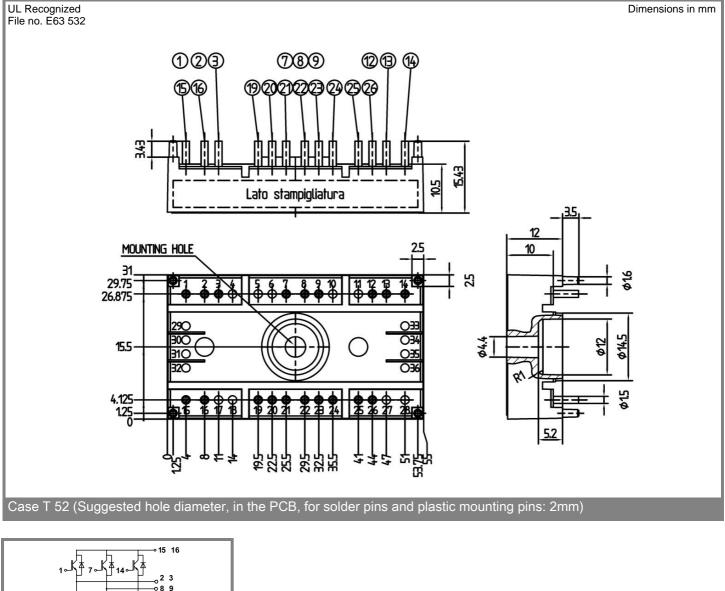








SK 25 GD 126 ET



25 GD 126 ET

Dimensions in mm

20

12 13 21

Į 22

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.