
SK 45 STA

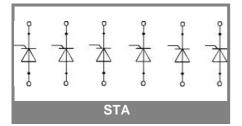
SEMITOP® 3

Six Separated Thyristors Module

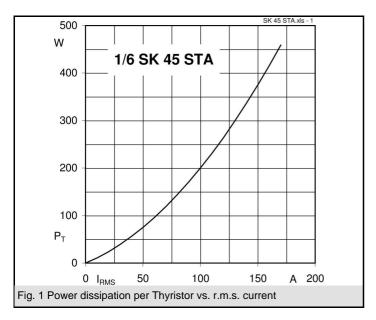
SK 45 STA

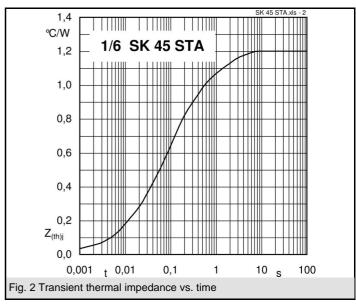
Preliminary Data

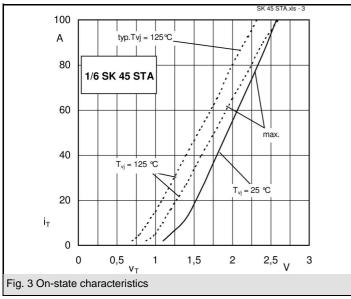
Features

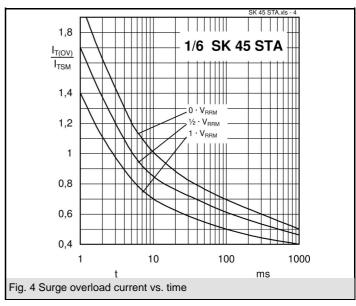

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Glass passivated thyristor chips
- Up to 1600 V reverse voltage

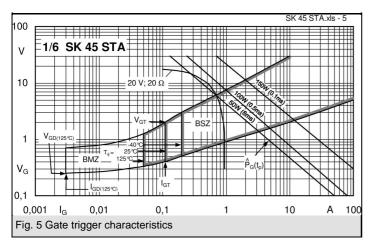
Typical Applications

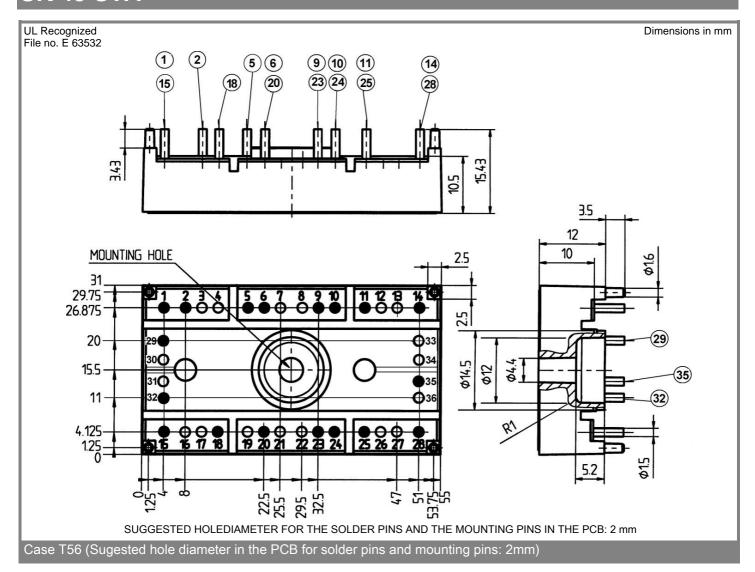

- Soft starters
- Light control (studios, theatres...)
- Temperature control

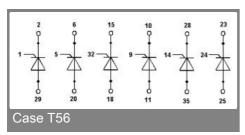

V _{RSM} V	V _{RRM} , V _{DRM} V	I _{TRMS} = 41 A (T _s = 75 °C)
900	800	SK 45 STA 08
1300	1200	SK 45 STA 12
1700	1600	SK 45 STA 16


Characteristics T _h = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units	
I _{rms} (W1C)	sin. 180°; T _S = 100°C	33	Α	
I _{rms} (W1C)	sin. 180°; T _S = 85°C	47	Α	
			Α	
I _{TSM} /I _{FSM}	T _{vi} = 25 (125) °C; 10 ms	450 (380)	Α	
l²t	$T_{vj} = 25 (125) ^{\circ}\text{C}; 8,3 \dots 10 \text{ms ms}$	1000 (720)	A²s	
T _{stg}		- 40 + 125	°C	
T _{solder}	terminals, 10 s	260	°C	
Thyristor		·		
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs	
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 60 Hz	50	A/µs	
t _q	$T_{vj} = 125 ^{\circ}\text{C}$; typ.	80	μs	
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	80 / 150	mA	
I_L	$T_{vj} = 25 ^{\circ}\text{C}; R_{G} = 33 \Omega; \text{typ. / max.}$	150 / 300	mA	
V _T	$T_{vi} = 25 ^{\circ}\text{C}; (I_T = 75 \text{A}); \text{max}.$	1,9	V	
$V_{T(TO)}$	T _{vi} = 125 °C	max. 1	V	
r _T	$T_{vi} = 125 ^{\circ}\text{C}$	max. 10	$m\Omega$	
I_{DD} ; I_{RD}	$T_{vj}^{'j}$ = 125 °C; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$	max. 10	mA	
$R_{th(j-s)}$		1,2	K/W	
T _{vi}		- 40 + 125	°C	
V_{GT}	$T_{vi} = 25 ^{\circ}\text{C}; \text{d.c.}$	3	V	
I _{GT}	$T_{vi}^{3} = 25 ^{\circ}\text{C}; \text{d.c.}$	100	mA	
V_{GD}	T_{vi}^{3} = 125 °C; d.c.	0,25	V	
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	3	mA	
Diode		·		
V_{F}	$T_{vj} = {^{\circ}C}; (I_F = A); max.$		V	
$V_{(TO)}$	$T_{vj} = {^{\circ}C}$		V	
r_T	$T_{vj} = {^{\circ}C}$		$m\Omega$	
I_{RD}	$T_{vj} = {^{\circ}C}; V_{RD} = V_{RRM}$		mA	
R _{th(j-s)}			K/W	
T_{vj}			°C	
Mechanic	al data	<u> </u>		
V_{isol}	a.c. 50 Hz; r.m.s.; 1 min / 1s	2500 (3000)	V	
M ₁	mounting torque	2,5	Nm	
w		30	g	
Case	SEMITOP® 3	T56		




SK 45 STA





SK 45 STA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.