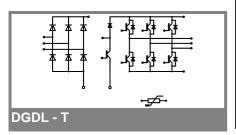


SEMITOP®4

3-phase bridge rectifier + brake chopper + 3-phase bridge inverter **SK 50 DGDL 066 T**

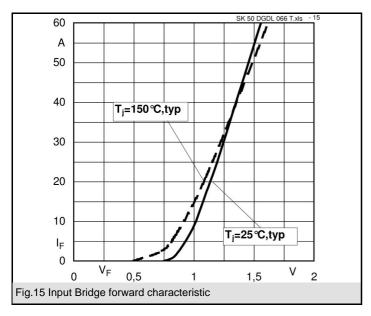
Target Data

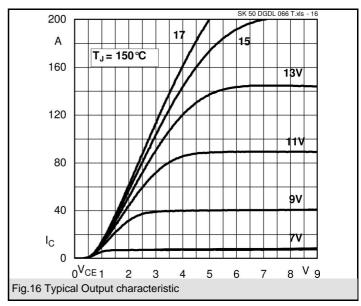
Features

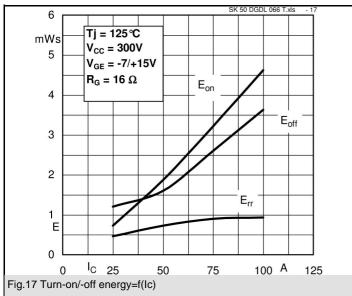

- One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- · Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperatur sensor

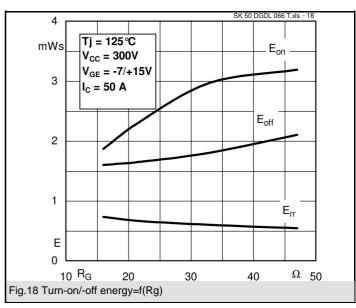
Typical Applications

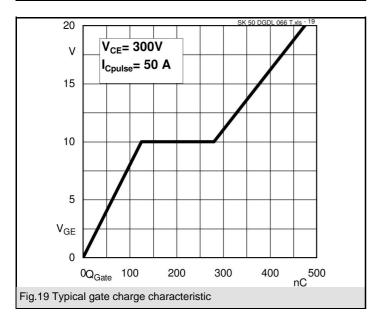
- Inverter up to 12,5 kVA
- Typical motor power 5,5 kW

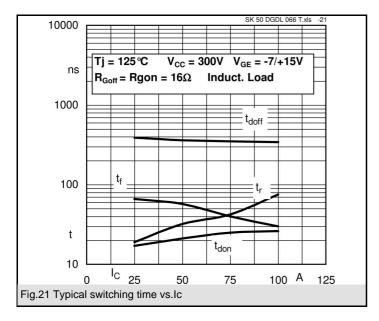

Remarks

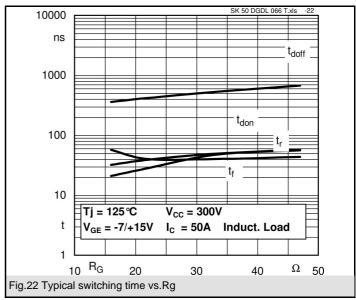

• V_{CE.sat} , V_F = chip level value

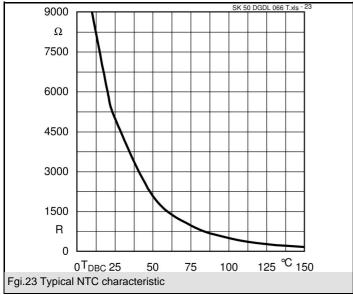


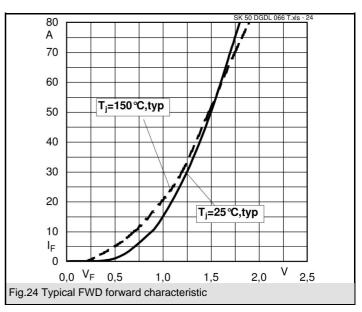

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter, Chopper							
V_{CES}		600	V				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	69 (55)	Α				
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	62 (47)	Α				
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	100	Α				
V_{GES}		± 20	V				
T _j		-40 + 175	°C				
Diode - Inverter, Chopper							
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	48 (35)	Α				
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	54 (42)	Α				
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$		56				
Diode - Rectifier							
V_{RRM}		800	V				
I _F	$T_s = 70 ^{\circ}\text{C}$	46	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	370	Α				
i²t	t_p = 10 ms, sin 180 °, T_j = 25 °C	680	A²s				
T _i		-40 + 175	°C				
T _{sol}	Terminals, 10 s	260	°C				
T _{stg}		-40 + 125	°C				
V_{isol}	AC, 1 min.	2500	V				

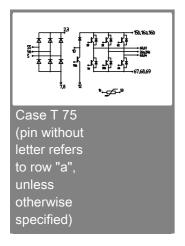

Characteristics T _s = 25°C, unless othe					ecified				
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CE(sat)}	I _{Cnom} = 50 A, T _i = 25 (150) °C	1,05	1,45 (1,65)	1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.8 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,8)	1,1 (1)	V				
r_{CE}	$T_j = 25 (150) ^{\circ}C$		11 (17)	15 (21)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		3,1		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,2		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,093		nF				
$R_{th(j-s)}$	per IGBT		0,95		K/W				
t _{d(on)}	under following conditions		21		ns				
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = -7 / + 15 \text{ V}$		32		ns				
$t_{d(off)}$	I _{Cnom} = 50 A, T _j = 125 °C		360		ns				
t _f	$R_{Gon} = R_{Goff} = 16 \Omega$		57		ns				
$E_{on} \left(E_{off} \right)$	inductive load		1,87 (1,6)		mJ				
Diode - Inverter, Chopper									
$V_F = V_{EC}$	I _F = 37 A, T _i = 25 (150) °C		1,35 (1,31)		V				
V _(TO)	T _i = 25 (150) °C		(0,85)		V				
r _T	T _i = 25 (150) °C		(12,6)		mΩ				
$R_{th(j-s)}$	per diode		1,6		K/W				
I _{RRM}	under following conditions		40		Α				
Q_{rr}	$I_{Fnom} = 50 \text{ A}, V_{R} = 300 \text{ V}$		5,6		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125^{\circ}\text{C}$		0,73		mJ				
	$di_F/dt = 1300 A/\mu s$								
Diode - Rectifier									
V_{F}	$I_{Fnom} = 25 \text{ A}, T_{j} = 25 \text{ °C}$		1,1		V				
$V_{(TO)}$	T _i = 150 °C		0,8		V				
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ				
$R_{th(j-s)}$	per diode		1,5		K/W				
Temperature Sensor									
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω				
Mechanical Data									
w			60		g				
M_s	Mounting torque		3,5		Nm				

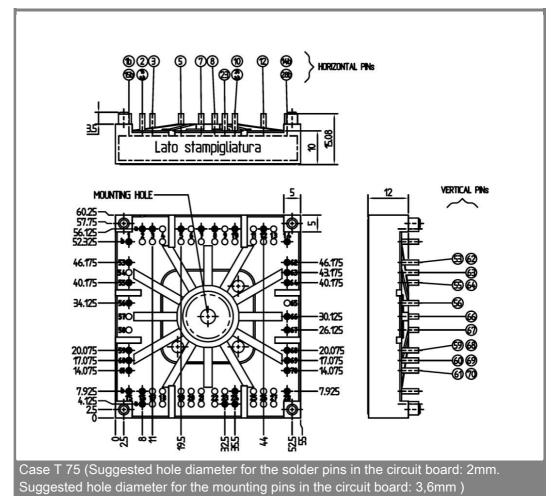












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.