

SEMITOP® 2

IGBT Module

SK50GARL065F

Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- Low threshold voltage
- · Fast Turbo diode

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		600	V		
I _C	T _j = 125 °C	T _s = 25 °C	54	Α		
		$T_s = 80 ^{\circ}C$	40	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		120	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs		
Inverse D	iode		'			
I _F	T _j = 150 °C	T_s = 25 °C	25	Α		
		$T_s = 80 ^{\circ}C$	17	Α		
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	100	Α		
Freewhee	ling Diode		•			
I _F	T _j = 150 °C	T _{case} = 25 °C		Α		
		T _{case} = 80 °C	50	Α		
I_{FRM}	I _{FRM} = 2 x I _{Fnom}		120	Α		
Module			<u>.</u>			
$I_{t(RMS)}$				Α		
T_{vj}			-40 + 150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise spec						pecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.7$ mA		3	4	5	V
I _{CES}	V _{GE} = 600 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0022	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				120	nA
V _{CE0}		T _j = 25 °C		1,2	1,3	V
		T _j = 125 °C		1,1	1,2	V
r _{CE}	V _{GE} = 15 V	T _i = 25°C			12	mΩ
		T _j = 125°C			22	mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	T _j = 25°C _{chiplev} .		1,7	2	V
		$T_j = 125^{\circ}C_{chiplev}$		2,2	2,2	V
C _{ies}				3,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
Q_G	V _{GE} =0 20 V			368		nC
t _{d(on)}				47		ns
t,	R_{Gon} = 15 Ω	$V_{CC} = 300V$		40		ns
E _{on}		I _{Cnom} = 40A		1,03		mJ
$t_{d(off)}$	$R_{Goff} = 15 \Omega$	T _j = 125 °C		203		ns
t _f		V _{GE} = ±15V		33		ns
E _{off}				0,8		mJ
R _{th(j-s)}	per IGBT	·			0,85	K/W

SEMITOP® 2

IGBT Module

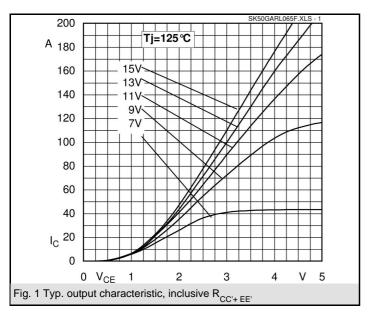
SK50GARL065F

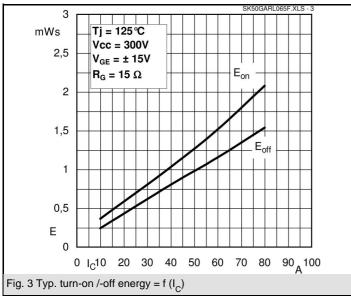
Preliminary Data

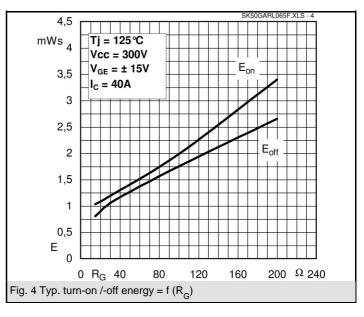
Features

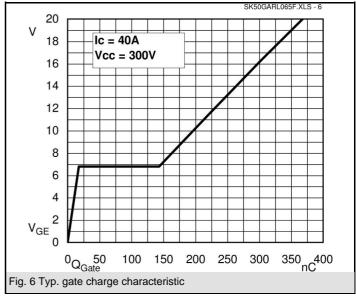
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- Low tail current with low temperature dependence
- · Low threshold voltage
- Fast Turbo diode

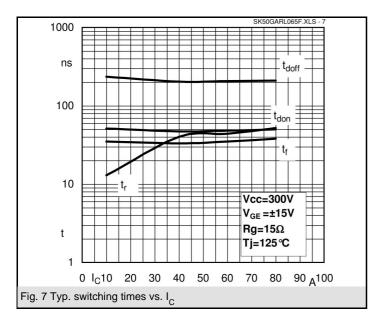
Typical Applications

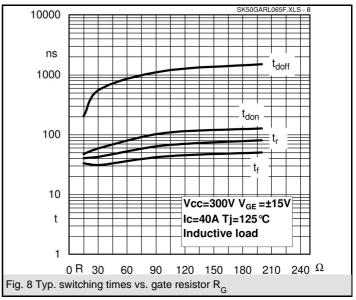

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

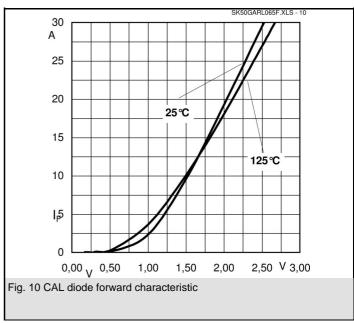

Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}; V_{GE} = 0 \text{ V}$			1,4	1,7	V		
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,7	V		
V_{F0}		T _j = 125 °C		0,9	1	V		
r _F		T _j = 125 °C		33	47	mΩ		
I _{RRM} Q _{rr}	I _{Fnom} = 30 A di/dt = 500 A/μs	T _j = 125 °C				Α μC		
E _{rr}	V _{CC} =300V					mJ		
R _{th(j-s)D}	per diode				2,3	K/W		
	eling diode							
$V_F = V_{EC}$	$I_{Fnom} = 60 \text{ A}; V_{GE} = 0 \text{ V}$			1,1	1,6	V		
		T_j = 150 °C _{chiplev} .			1,25	V		
V_{F0}		T _j = 150 °C		0,85		V		
r _F		T _j = 150 °C		7		V		
I _{RRM}	I _{Fnom} = 50 A	T _j = 125 °C		38		Α		
Q_{rr}	di/dt = -1000 A/µs			2		μC		
E _{rr}	V _R =300V			0,45		mJ		
$R_{th(j-s)D}$	per diode				1,1	K/W		
M_s	to heat sink		1,8		2	Nm		
w				19		g		

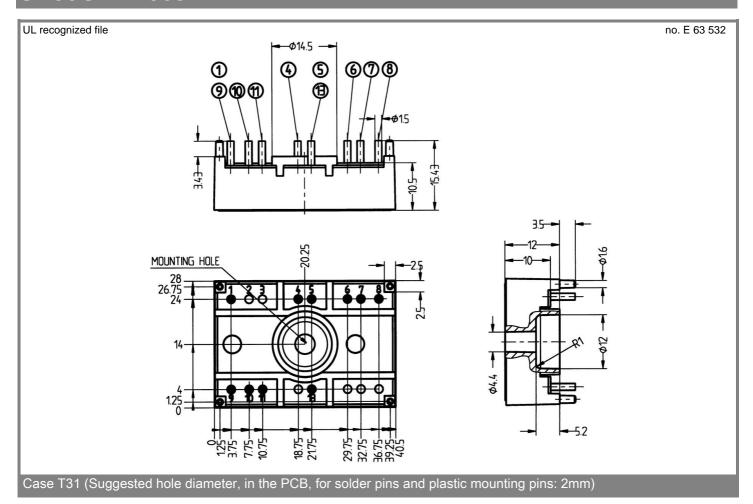

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

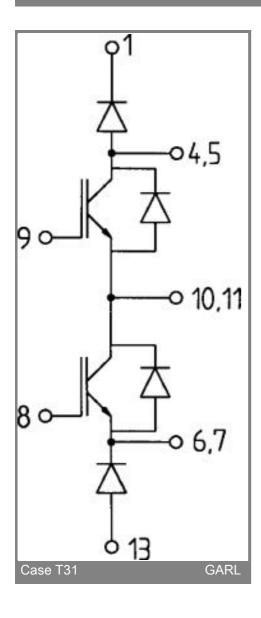

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.











4 21-02-2007 SCT © by SEMIKRON

5 21-02-2007 SCT © by SEMIKRON

6 21-02-2007 SCT © by SEMIKRON