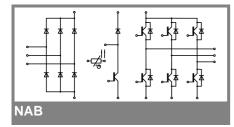
SKiiP 02NAC066V1

MiniSKiiP[®] 1

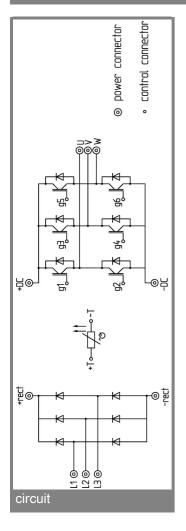
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKIIP 02NAC066V1

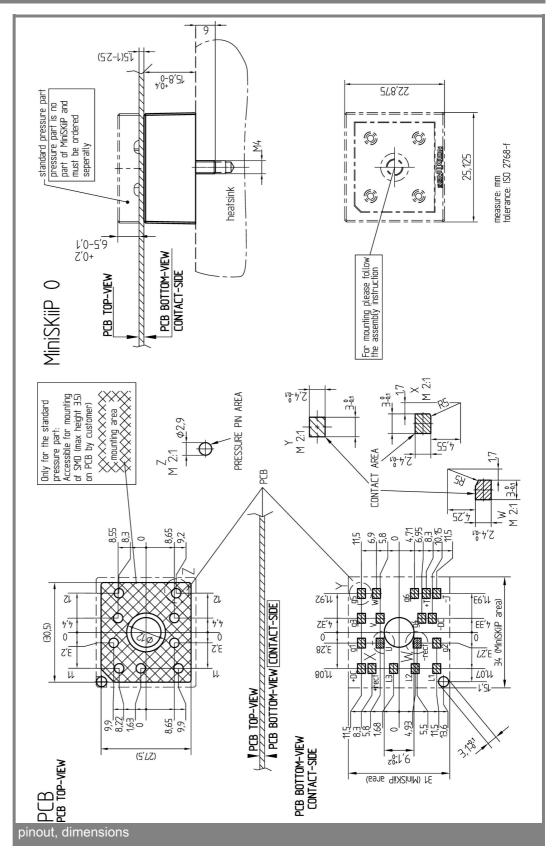
Target Data

Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 5 kVA
- Typical motor power 2,2 kW


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter, Chopper								
V_{CES}		600	V					
I _C	T _s = 25 (70) °C		Α					
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α					
V_{GES}		± 20	V					
T_j		- 40 + 150	°C					
Diode - Inverter, Chopper								
I _F	T _s = 25 (70) °C		Α					
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$		Α					
T _j		- 40 + 150	°C					
Diode - Rectifier								
V_{RRM}		800	V					
I _F	T _s = 70 °C	35	Α					
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	220	Α					
i²t	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	240	A²s					
T _j		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	20	Α					
T_{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characteristics		T_s	T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	1	min.	typ.	max.	Units			
IGBT - Inverter, Chopper									
V _{CEsat}	I _C = 10 A, T _i = 25 (125) °C			2 (2,2)	2,5 (2,7)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$		3	4	5	V			
V _{CE(TO)}	T _j = 25 (125) °C			1,2 (1,1)	1,3 (1,2)	V			
r _T	$T_{j} = 25 (125) ^{\circ}C$			80 (110)	120 (150)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,62		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$			0,13		nF _			
C _{res}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz			0,06		nF			
$R_{th(j-s)}$	per IGBT			1,5		K/W			
t _{d(on)}	under following conditions			20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$			25		ns			
t _{d(off)}	$I_C = 10 \text{ A}, T_j = 125 ^{\circ}\text{C}$			225		ns			
<u>t_f</u>	$R_{Gon} = R_{Goff} = 60 \Omega$			15		ns			
E _{on}	inductive load			0,3		mJ			
E _{off}				0,23		mJ			
Diode - Ir	nverter, Chopper								
$V_F = V_{EC}$	I _F = 10 A, T _j = 25 (125) °C			1,4 (1,4)	1,7 (1,7)	V			
$V_{(TO)}$	$T_j = 25 (125) ^{\circ}C$			1 (0,9)	1,1 (1)	V			
r _T	$T_{j} = 25 (125) ^{\circ}C$			45 (50)	60 (70)	mΩ			
$R_{th(j-s)}$	per diode			2,5		K/W			
I _{RRM}	under following conditions			20		Α			
Q_{rr}	I _F = 10 A, V _R = 300 V			1		μC			
E _{rr}	V _{GE} = 0 V, T _j = 125 °C			0,2		mJ			
	$di_F/dt = 1200 A/\mu s$								
Diode - R	ectifier								
V_{F}	I _F = 15 A, T _i = 25 °C			1,1		V			
V _(TO)	T _i = 150 °C			0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$			20		mΩ			
$R_{th(j-s)}$	per diode			1,5		K/W			
	ture Sensor								
R _{ts}	3 %, T _r = 25 (100) °C			1000(1670)		Ω			
Mechanical Data									
w				35		g			
M_s	Mounting torque		2		2,5	Nm			

SKiiP 02NAC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.