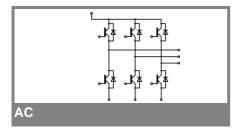
SKiiP 03AC126V1

3-phase bridge inverter

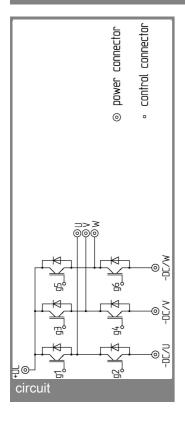
SKiiP 03 AC 126 V1

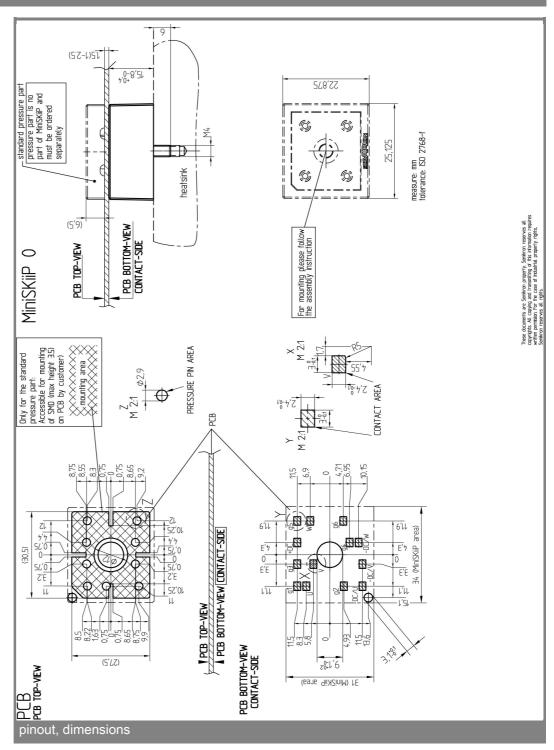
Target Data

Features


- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Remarks


• V_{CEsat}, V_F = chip level value


Absolute	Maximum Ratings	T _S = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	19 (15)	Α				
I _{CRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ms}$	38 (30)	Α				
V_{GES}	,	± 20	V				
T _j		-40+150	°C				
Diode - Inverter							
I _F	T _s = 25 (70) °C	14 (11)	Α				
I _{FRM}	$T_s = 25 (70) ^{\circ}C, t_p \le 1 \text{ ms}$	28 (22)	Α				
T _j		-40+150	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T _{stg}	$T_{op} \le T_{stg}$	-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

Character	ristics	T _S = 25 °C	_S = 25 °C, unless otherwise specified				
	Conditions	min.	typ.	max.	Units		
IGBT - Inverter							
V_{CEsat}	I _C = 8 A, T _i = 25 (125) °C		1,7 (2)	2,1 (2,4)	V		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.3 \text{ mA}$	5	5,8	6,5	V		
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V		
r _T	$T_{j} = 25 (125) ^{\circ}C$		87 (138)	113 (162)	mΩ		
C _{ies}	$V'_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,7		nF		
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1		nF		
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,1		nF		
$R_{th(j-s)}$	per IGBT		1,5		K/W		
t _{d(on)}	under following conditions		35		ns		
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns		
t _{d(off)}	$I_C = 8 \text{ A}, T_j = 125 ^{\circ}\text{C}$		365		ns		
t _f	$R_{Gon} = R_{Goff} = 50 \Omega$		105		ns		
E _{on}	inductive load		0,8		mJ		
E _{off}			0,95		mJ		
Diode - Inverter							
$V_F = V_{EC}$	I _F = 8 A, T _j = 25 (125) °C		1,9 (2)	2,2 (2,4)	V		
V _(TO)	$T_j = 25 (125) ^{\circ}C$		1 (0,8)		V		
r _T	$T_{j} = 25 (125) ^{\circ}\text{C}$		112 (150)	138 (187)	mΩ		
$R_{th(j-s)}$	per diode		2,5		K/W		
I _{RRM}	under following conditions		12		Α		
Q_{rr}	I _F = 8 A, V _R = 600 V		1,8		μC		
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		0,9		mJ		
	$di_F/dt = 520 \text{ A/}\mu\text{s}$						
Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω		
Mechanical Data							
m			21,5		g		
M_s	Mounting torque	2		2,5	Nm		

SKiiP 03AC126V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.