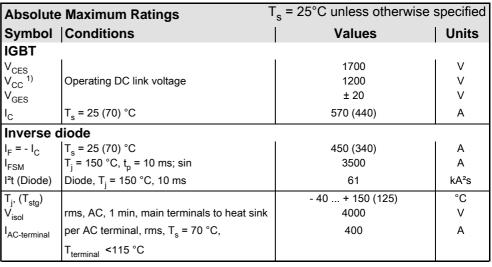
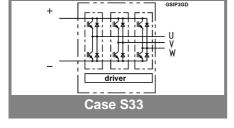

SKiiP 603GD172-3DUW

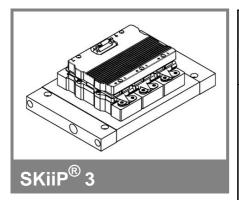

6-pack-integrated intelligent Power System

Power section SKiiP 603GD172-3DUW


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068 -1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal



Characteristics $T_s = 25^{\circ}\text{C}$ unless otherwise specif							specified	
	Conditions				min.	typ.	max.	Units
IGBT								
V _{CEsat}	I _C = 300 A measured at	A, T _j = 25 (1 terminal	25) °C;			1,9 (2,2)	2,4	V
V_{CEO}		25) °C; at to				1 (0,9)	1,2 (1,1)	V
r_{CE}		25) °C; at to				3 (4,1)	3,9 (5)	mΩ
I _{CES}	$V'_{GE} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}C$					1,2 (72)		mA
E _{on} + E _{off}	$I_{C}^{J} = 300 \text{ A}, V_{CC} = 900 \text{ V}$					195		mJ
	T _i = 125 °C, V _{CC} = 1200 V					mJ		
R _{CC+EE}	terminal chip, T _i = 25 °C					mΩ		
L_{CE}	top, bottor	m ´				12		nH
C _{CHC}	per phase	, AC-side				1,7		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 300 A measured at	., T _j = 25 (1 terminal	25) °C			1,9 (1,7)	2,4	V
V_{TO}	T _i = 25 (12	25) °C				1,1 (0,8)	1,4 (1,1)	V
r _T	$T_i = 25 (12)$					2,6 (2,9)	3,4 (3,7)	mΩ
Ė _{rr}		, V _{CC} = 90	0 V			36		mJ
	T _j = 125 °	C, V _{CC} = 12	200 V			43		mJ
Mechani	cal data							
M_{dc}	DC termin	ıals, SI Uni	ts		6		8	Nm
M _{ac}		als, SI Unit			13		15	Nm
W	SKiiP® 3 System w/o heat sink					2,4		kg
w	heat sink					7,5		kg
Thermal sink; "r"						:.);	erence to	heat
R _{th(j-s)l}	per IGBT						0,051	K/W
R _{th(j-s)D}	per diode						0,1	K/W
Z _{th}	R _i (mK/W)) (max. valu	ıes)		tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	4,2	20,4	23,4	0	69	0,35	0,02	1
$Z_{\text{th(j-r)D}}$	7,8	12	53,1	53,1	50	5	0,25	0,04
$Z_{th(r-a)}$	4,6	4,7	1,1	0,6	48	15	2,8	0,35

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 603GD172-3DUW

6-pack-integrated intelligent Power System

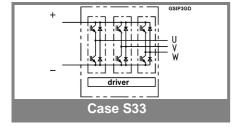
6-pack integrated gate driver SKiiP 603GD172-3DUW

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	14	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	420+34*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)		625		Α
U_{DCTRIP}	over temperature protection U _{DC} -protection (U _{analog OUT} = 9 V); ()	110	1200	120	°C V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

