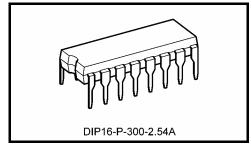
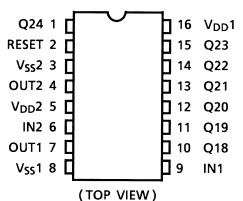
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC4521BP

TC4521BP 24-Stage Frequency Divider

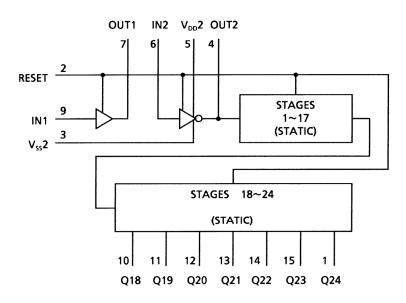
TC4521BP is frequency divider consisting of 24 stages of flip-flop. The input section is equipped with an inverter to enable to use either RC oscillator circuit or crystal oscillator circuit and to accept pulse from external clock source.


Each flip-flop is inverted by the falling edge of the output of previous stage flip-flop and this can count up to the maximum of $2^{24} = 16,777,216$.

Since six outputs, 2^{18} , 2^{19} , 2^{20} , 2^{21} , 2^{22} , and 2^{23} are available besides of 2^{24} , adjustment of frequency divided output can be achieved.

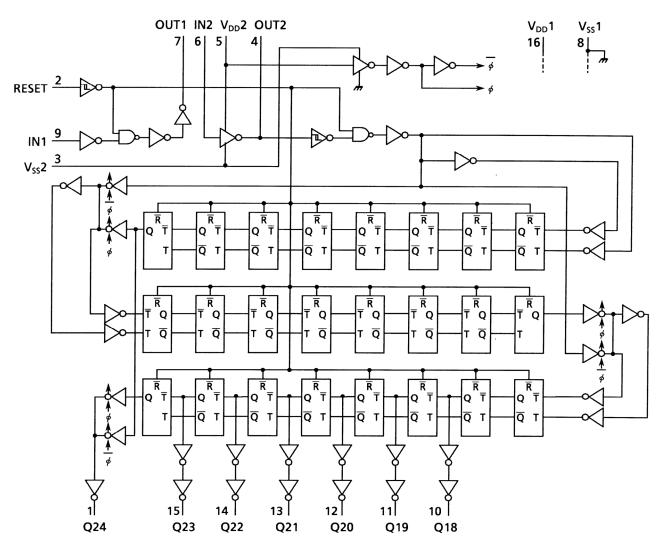
Weight: 1.00 g (typ.)

Pin Assignment

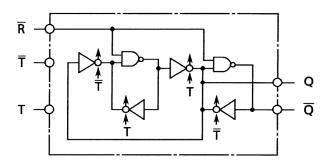


Count Capacity

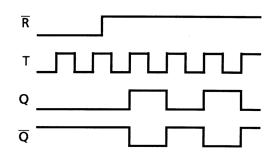
Output	Count Capacity			
Q18	$2^{18} = 262,144$			
Q19	$2^{19} = 524,288$			
Q20	2 ²⁰ = 1,048,576			
Q21	$2^{21} = 2,097,152$			
Q22	$2^{22} = 4,194,304$			
Q23	$2^{23} = 8,388,608$			
Q24	$2^{24} = 16,777,216$			


TOSHIBA

Block Diagram



TOSHIBA


Logic Diagram

Internal Flip Flop Logic Diagram

Flip Flop Timing Chart

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
DC supply voltage	V _{DD} 1	$V_{SS}1 - 0.5 V_{SS}1 + 20$	V
DC supply voltage	V _{DD} 2	V _{SS} 1 - 0.5~V _{DD} 1 + 0.5	v
put voltage V _{IN}		$V_{SS}1 - 0.5 \text{-} V_{DD}1 + 0.5$	V
Output voltage	V _{OUT}	$V_{SS}1 - 0.5 \text{-} V_{DD}1 + 0.5$	V
DC input current	I _{IN}	±10	mA
Power dissipation	PD	300	mW
Operating temperature range	T _{opr}	-40~85	°C
Storage temperature range	T _{stg}	-65~150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

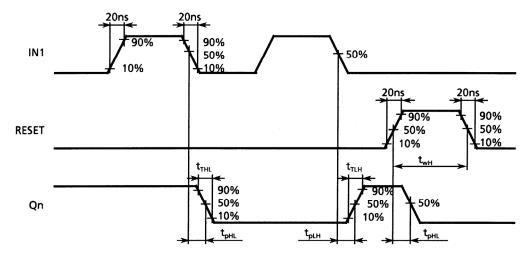
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (V_{SS}1 = V_{SS}2 = 0 V) (Note)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V _{DD} 1, V _{DD} 2	—	3	_	18	V
Input voltage	V _{IN}	_	0		V _{DD} 1	V

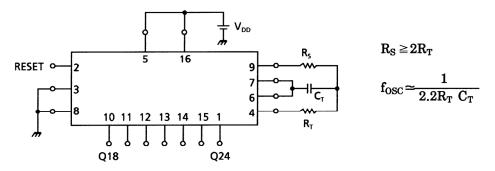
Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{DD} or V_{SS} .

Static Electrical Characteristics ($V_{SS}1 = V_{SS}2 = 0 V$, $V_{DD}1 = V_{DD}2$)

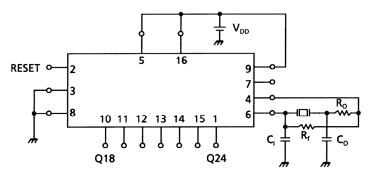

Svn		Sym-	Test Condition		-40°C		25°C			85°C			
Charac	teristics	bol		V _{DD} (V)	Min	Max	Min	Тур.	Max	Min	Max	Unit	
High-level output VOH		I _{OUT} < 1 μΑ	5	4.95	_	4.95	5.00	_	4.95	_			
		V _{OH}	$ 1_{OUT} < 1 \mu A$ $V_{IN} = V_{SS}, V_{DD}$	10	9.95	—	9.95	10.00	—	9.95	—	V	
Ŭ			VIN – VSS, VDD	15	14.95	_	14.95	15.00	_	14.95	_		
			I _{OUT} < 1 μΑ	5		0.05		0.00	0.05		0.05		
Low-level voltage	output	V _{OL}	$V_{IN} = V_{SS}, V_{DD}$	10	_	0.05		0.00	0.05	—	0.05	V	
Ŭ			VIN – VSS, VDD	15	_	0.05		0.00	0.05	—	0.05		
			V _{OH} = 4.6 V	5	-0.61		-0.51	-1.0		-0.42			
			$V_{OH} = 2.5 V$	5	-2.5	—	-2.1	-4.0	—	-1.7	—		
Output hig	h current	IOH	V _{OH} = 9.5 V	10	-1.5	—	-1.3	-2.2	—	-1.1	—	mA	
			V _{OH} = 13.5 V	15	-4.0	—	-3.4	-9.0	—	-2.8	—		
			$V_{IN}=V_{SS},V_{DD}$										
			$V_{OL} = 0.4 V$	5	0.61	—	0.51	1.2	—	0.42	—		
	v current	le.	$V_{OL} = 0.5 V$	10	1.5	—	1.3	3.2	—	1.1	—	mA	
Output low current	IOL	V _{OL} = 1.5 V	15	4.0	—	3.4	12.0	—	2.8	—	ША		
			$V_{IN}=V_{SS},V_{DD}$										
			$V_{OUT} = 0.5 V, 4.5 V$	5	3.5		3.5	2.75		3.5			
Input high	voltago	VIH	V _{OUT} = 1.0 V, 9.0 V	10	7.0	—	7.0	5.5	—	7.0	—	V	
input nigh	voltage	VIН	$V_{OUT} = 1.5 V, 13.5 V$	15	11.0	—	11.0	8.25	—	11.0	—	v	
			$ I_{OUT} < 1 \ \mu A$										
			$V_{OUT} = 0.5 V, 4.5 V$	5		1.5		2.25	1.5		1.5		
Input low y	voltago	VIL	V _{OUT} = 1.0 V, 9.0 V	10	—	3.0		4.5	3.0		3.0	v	
Input low voltage		۷IL	V _{OUT} = 1.5 V, 13.5 V	15	—	4.0		6.75	4.0		4.0	v	
			$ I_{OUT} < 1 \ \mu A$										
Input ^{"H"}	"H" level	IIН	V _{IH} = 18 V	18		0.1		10 ⁻⁵	0.1		1.0	μA	
current	"L" level	١ _{١L}	$V_{IL} = 0 \ V$	18	_	-0.1		-10 ⁻⁵	-0.1	—	-1.0	μη	
				5	_	5		0.005	5		150		
Quiescent current	Quiescent supply current		$V_{IN} = V_{SS}, V_{DD}$	10	—	10		0.010	10		300	μA	
ourient			(Note)	15	—	20		0.015	20		600		

Note: All valid input combinations.

Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} 1 = V_{SS} 2 = 0 V, V_{DD} 1 = V_{DD} 2, C_L = 50 pF)


Characteristics	Symbol	Test Condition	Min	Turp	Max	Unit	
Characteristics	Symbol		V _{DD} (V)	IVIIII	Тур.	Max	Unit
Output transition time			5		70	200	
(low to high)	t _{TLH}	—	10	—	35	100	ns
			15	—	30	80	
Output transition time			5	_	70	200	
Output transition time	t _{THL}	_	10	—	35	100	ns
(high to low)			15	—	30	80	
Dranagation dalay time	4		5	_	1.1	9.0	
Propagation delay time	t _{pLH}	_	10	—	0.5	3.5	μS
(IN2-Q18)	t _{pHL}		15	—	0.3	2.7	
Dranagation dalay time	4		5	_	1.4	12	
Propagation delay time	t _{pLH}	_	10	—	0.6	4.5	μS
(IN2-Q24)	t _{pHL}		15	—	0.4	3.5	
			5	_	220	2600	
Propagation delay time	t _{pHL}	—	10	_	100	1000	ns
(RESET-Qn)			15	—	70	750	
			5	3	9.5	_	
Max clock frequency	f _{CL}	_	10	6	17.5		MHz
			15	8	23.5		
Max clock input rise time	4		5				
	t _{rCL}	—	10	No limit			μS
Max clock input fall time	t _{fCL}		15				
			5	_	55	385	
Min clock pulse width	t _W	—	10	—	25	150	ns
			15	_	16	120	
Min pulse width			5	_	60	385	
Min pulse width	t _{WH}	—	10	—	26	150	ns
(RESET)			15	—	20	120	
Input capacitance	C _{IN}	_			5	7.5	pF

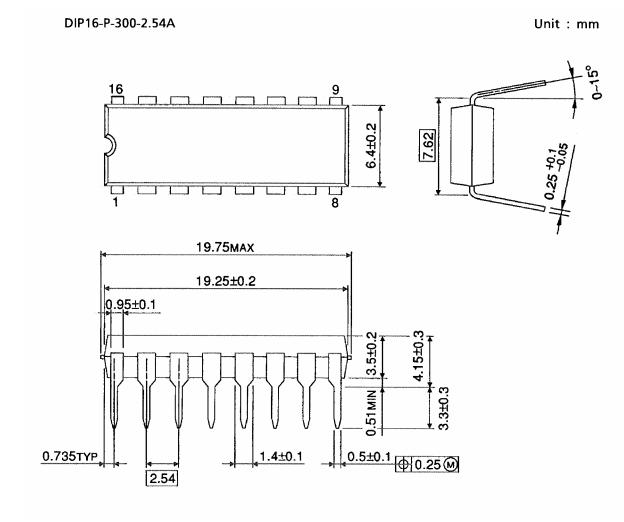
Waveforms for Measurement of Dynamic Characteristics



Application Circuit

When CR Oscillation is Used as Time Reference

When Crystal Oscillation is Used as the Time Reference



Typical Data

X'tal (Hz)	C _I , C _O (pF)	R _O (Ω)
32.768 k	23	500 k
100 k	60	100 k
1 M	45~50	100
4.194304 M	12~15	0

 $R_f=10~M\Omega$

Package Dimensions

Weight: 1.00 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.