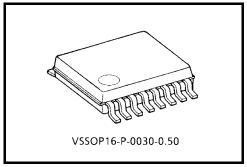
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC7MP01FK

Low-Voltage Triple Gate(6-input AND + 4-input OR + inverter)

The TC7MP01FK is a high-performance CMOS triple gate (6-input AND + 4-input OR + inverter). Desinged for use in 1.8 V, 2.5 V, or 3.3 V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to 3.6V.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.03 g (typ.)

Features

• Low-voltage operation $V_{CC} = 1.65 \text{ to } 3.6 \text{V}$

• Quiescent supply current : $I_{CC} = 2 \mu A(max)(Vcc=3.6V)$

• High-speed operation : 6 input AND

 $\begin{array}{l} \rm tpd = 3.7 ns(max)(Vcc = 3.3 \pm 0.3 V) \\ \rm tpd = 5.5 ns(max)(Vcc = 2.5 \pm 0.2 V) \\ \rm tpd = 11.0 ns(max)(Vcc = 1.8 \pm 0.15 V) \end{array}$

4 input OR

 $\begin{aligned} & \text{tpd=}3.5 \text{ns}(\text{max})(\text{Vcc=}3.3\pm0.3\text{V}) \\ & \text{tpd=}5.0 \text{ns}(\text{max})(\text{Vcc=}2.5\pm0.2\text{V}) \\ & \text{tpd=}10.0 \text{ns}(\text{max})(\text{Vcc=}1.8\pm0.15\text{V}) \end{aligned}$

INV.

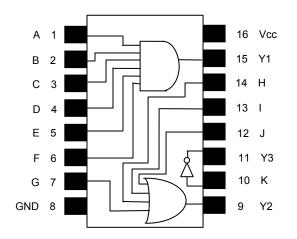
 $\begin{array}{l} \rm tpd = 3.8ns(max)(Vcc = 3.3 \pm 0.3V) \\ \rm tpd = 5.2ns(max)(Vcc = 2.5 \pm 0.2V) \\ \rm tpd = 9.5ns(max)(Vcc = 1.8 \pm 0.15V) \end{array}$

• Output current $: I_{OH}/I_{OL} = \pm 12 \text{mA(min)}(Vcc=3.0V)$

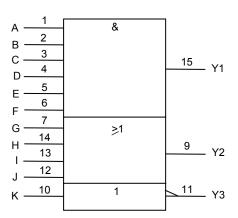
: I_{OH}/I_{OL}=±9mA(min)(Vcc=2.3V) : I_{OH}/I_{OL}=±2mA(min)(Vcc=1.65V)

• Latch-up performance : ±300mA

• ESD performance : Machine model $\geq \pm 200 \text{ V}$


Human body model $\geq \pm 2000 \text{ V}$

• Ultra-small package : VSSOP(US16)


Power-down protection provided on all inputs and outputs.

2007-10-19

Pin Assighment (top view)

IEC Logic Symbol

Truth Table (AND Logic)

А	В	С	D	E	F	Y1
L	х	х	х	х	х	L
х	L	х	х	х	х	L
х	×	L	х	х	х	L
х	×	×	L	x	x	L
х	×	×	×	L	x	L
х	х	х	х	х	L	L
Н	Н	Н	Н	Н	Н	Н

Truth Table (OR Logic)

G	Н	I	J	Y2
Н	х	х	х	Н
Х	Н	Х	х	Н
х	х	Н	х	Н
х	х	Х	Н	Н
L	L	L	L	L

Truth Table (INV. Logic)

K	Y3
L	Н
Н	L

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vcc	-0.5 to 4.6	V	
DC input voltage	V _{IN}	-0.5 to 4.6	V	
DC output voltage	Vout	-0.5 to 4.6 (Note 2)	V	
DC output voltage	VOUT	-0.5 to Vcc+0.5 (Note 3)		
Input diode current	I _{IK}	-50	mA	
Output diode current	lok	±50 (Note 4)	mA	
DC output current	I _{OUT}	±50	mA	
DC Vcc/ground current	I _{CC} /I _{GND}	±100	mA	
Power dissipation	P _D	180	mW	
Storage temperature	Tstg	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Vcc=0V

Note 3: High or low state.

Note 4: Vout<GND, Vout>Vcc

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit		
Power supply voltage	Vcc	1.65 to 3.6	V		
rower supply voltage	VCC	1.2 to 3.6 (Note 2)	V		
DC input voltage	V _{IN}	-0.3 to 3.6	V		
DC output voltage	V _{OUT}	0 to 3.6 (Note 3)	V		
DC output voltage	V OUT	0 to Vcc (Note 4)	V		
		±12 (Note 5)			
Output current	I _{OH} /I _{OL}	±9 (Note 6)	mA		
		±2 (Note 7)			
Operating Temperature	Topr	-40 to 85	°C		
Input rise and fall time	dt / dv	0 to 10 (Note 8)	ns/V		

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: Data retention only

Note 3: Vcc=0V

Note 4: High or low state

Note 5: Vcc=3.0 to 3.6V

Note 6: Vcc=2.3 to 2.7V

Note 7: Vcc=1.65 to 1.95V

Note 8: VIN=0.8 to 2.0V,Vcc=3.0V

Electrical Characteristics

DC Characteristics (Ta=-40 to 85°C, 2.7V<Vcc≦3.6V)

Characteri	stics	Symbol	Test c	Test condition		Min	Max	Unit
Input Voltage	H-level	V_{IH}		-		2.0	-	V
Input Voltage	L-level	V _{IL}		-	2.7 to 3.6	-	0.8	V
	H-level		V _{IN} =	I _{OH} = -100uA	2.7 to 3.6	Vcc-0.2	-	
		V		I _{OH} = -6mA	2.7	2.2	-	
	V_{0H}	V_{IH} or V_{IL}	I _{OH} = -9mA	3.0	2.4	-		
				I _{OH} = -12mA	3.0	2.2	-	V
Output voltage		V _{0L}	V _{IN} = V _{IH} orV _{IL}	I _{OL} = 100uA	2.7 to 3.6	-	0.2	
	L-level			I _{OL} = 6mA	2.7	-	0.4	
	L-level			I _{OL} = 9mA	3.0	-	0.4	
				I _{OL} = 12mA	3.0	-	0.55	
Input leakage	current	I _{IN}	V _{IN} =0	to 3.6V	2.7 to 3.6	-	±2.0	μΑ
Power-off leakage	ge current	I _{OFF}	V _{IN} ,V _{OUT}	=0 to 3.6V	0	-	2.0	μΑ
			V _{IN} =V _{CC} or GND		2.7 to 3.6	-	2.0	μΑ
Quiescent supply current		ΔI _{CC}		cc-0.6V input)	2.7 to 3.6	-	750	μΑ

DC Characteristics (Ta=-40 to 85°C, 2.3V≦Vcc≦2.7V)

Characteris	stics	Symbol	Test condition		Vcc(V)	Min	Max	Unit
Input voltage	H-level	V_{IH}		-		1.6	-	V
input voitage	L-level	V _{IL}		-	2.3 to 2.7	-	0.7	V
				I _{OH} =-100uA	2.3 to 2.7	Vcc-0.2	-	
	H-level	V_{0H}	V _{IN} =	I _{OH} = -3mA	2.3	2.0	-	
n-ievei	n-level	V 0H	V _{IH} orV _{IL}	I _{OH} = -6mA	2.3	1.8	-	V
Output voltage				I _{OH} = -9mA	2.3	1.7	-	
				I _{OL} = 100uA	2.3 to 2.7	-	0.2	
	L-level	V_{0L}	V _{IN} = V _{IH} orV _{II}	I _{OL} = 6mA	2.3	-	0.4	
			VIH OI VIL	I _{OL} = 9mA	2.3	-	0.6	
Input leakage	current		V _{IN} =(0 to 3.6V	2.3 to 2.7	-	±2.0	μΑ
Power-off leakag	ge current	rent I _{OFF} V _{IN} ,V _{OUT} =0 to 3.6V		_T =0 to 3.6V	0	-	2.0	μΑ
Quiescent suppl	y current	Icc	V _{IN} =V _{CC} or GND		2.3 to 2.7	-	2.0	μΑ

4

DC Characteristics (Ta=-40 to 85°C, 1.65V≦Vcc<2.3V)

Charac	cteristics	Symbol	Test condition		Vcc(V)	Min	Max	Unit	
Input voltage	H-Level	V _{IH}		-		0.7 × Vcc	-	V	
iliput voltage	L-Level	V _{IL}		-	1.65 to 2.3	-	0.13 × Vcc	V	
	H-Level	el V _{0H}		I _{OH} =-100uA	1.65	Vcc-0.2	-		
Output voltage	I I-Level	V 0H	V_{IH} or V_{IL}	I _{OH} =-2mA	1.65	1.3	-	V	
o aspar voltago	L-Level	V_{0L}	V _{IN} = V _{IH} orV _{IL}	I _{OL} =2mA	1.65	-	0.2	,	
Input leak	age current	I _{IN}	V _{IN} =0 to 3.6V		1.65	1	±2.0	μΑ	
Power-off lea	akage current	I _{OFF}	V _{IN} ,V _{OUT} =0 to 3.6V		0	-	2.0	μΑ	
Quiescent s	upply current	I _{CC}	V _{IN} =V ₀	cc or GND	1.65	-	2.0	μΑ	

AC Characteristics (Ta=-40 to 85°C,Input: tr=tf=2.0ns, CL=30pF, RL=500 Ω)

Characteristics	Symbol	Test condition		Vcc(V)	Min	Max	Unit
				1.8±0.15	1.0	11.0	
Propagation delay time		6 input AND		2.5±0.2	0.8	5.5	
				3.3±0.3	0.6	3.7	
	tpLH tpHL	4 input OR	F: 4	1.8±0.15	1.0	10.0	
			Figure 1, Figure 2	2.5±0.2	0.8	5.0	ns
				3.3±0.3	0.6	3.5	
		INV.		1.8±0.15	1.0	9.5	
				2.5±0.2	0.8	5.2	
				3.3±0.3	0.6	3.8	
	4111	1		1.8±0.15	-	0.5	
Output to output skew	tosLH tosHL		(Note)		-	0.5	ns
	tooric			3.3±0.3	-	0.5	

For C_L=50pF, add approximately 300ps to the AC maximum specification.

Note: Parameter guaranteed by design.

 $(tosLH=|t_{pLHm}-t_{pLHn}|,\;tosHL=|t_{pHLm}-t_{pHLn}|)$

Capacitive Characteristics(Ta=25°C)

Characteristics	Symbol	Test 0	Condition	Vcc(V)	Тур.	Unit
Input Capacitance	C _{IN}		-	1.8, 2.5, 3.3	6	pF
	C_PD	6 input AND		1.8, 2.5, 3.3	18	pF
Power dissipation capacitance		4 input OR	fin=10MHz Table1, (Note)	1.8, 2.5, 3.3	17	
		INV.	Table I, (Note)	1.8, 2.5, 3.3	14	

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.

I_{CC(opr)} =C_{PD}·V_{CC}·V_{IN}+I_{CC}/3 (per gate)

Table1 C_{PD} Test Condition

Function	Pin															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6 input AND	Р	Н	Н	Н	Н	Н	Х	G	0	X	0	Х	Х	Х	С	٧
4 input OR	Х	Х	Х	Х	Х	Х	Р	G	С	Х	0	L	L	L	0	٧
INV.	X	Х	X	Х	Х	Х	Х	G	Ο	Р	С	Х	Х	Х	0	٧

-Symbol explanation-

V=V_{CC}(+3.3V) X=Don't care(Fixed to V_{CC} or GND)

G=GND(0V) O=Open

L=Logic0(GND) P=Input pulse with 50% duty cycle.

AC Test Circuit

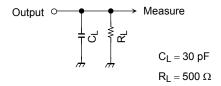
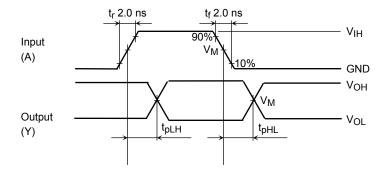
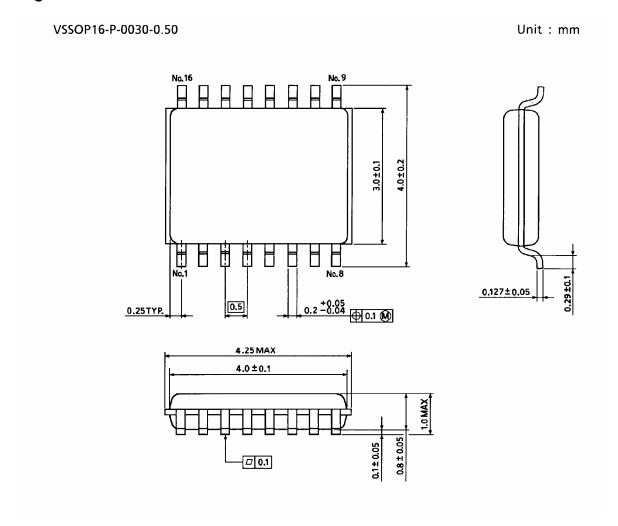



Figure 1

AC Waveform



Symbol	Vcc							
Зупівої	3.3±0.3V	2.5±0.2V	1.8±0.15V					
V _{IH}	2.7V	Vcc	Vcc					
V _M	1.5V	Vcc/2	Vcc/2					

Figure 2 t_{pLH}, t_{pHL}

7

Package Dimensions

Weight: 0.03 g (typ.)

8 2007-10-19

RESTRICTIONS ON PRODUCT USE

Handbook" etc.

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.