TOSHIBA Linear C-MOS Integrated Circuit Silicon Monolithic

TC90L01NG(TENTATIVE)

Audio/Video Switching IC for TVs

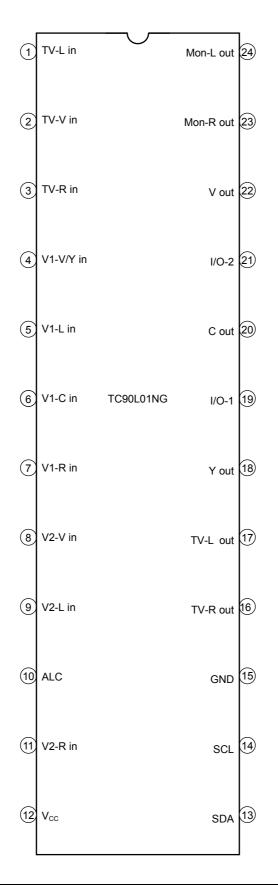
The TC90L01NG is an audio/video switching IC for TV sets.

Conforming to I²C bus standards, it allows you to perform various switching operations through the bus lines by using a microcomputer. This IC has the functions of audio mute, ALC(Auto Level Control), audio volume and so on.


TC90L01NG	
REALIZED	

Weight SDIP24-P-300-1.78:1.22 g (typ.)

Features


I²C bus control Video : 3-channel inputs and 1-channel outputs (1 channels conforming to S system) Audio : 3-channel inputs and 1-channel outputs Monitor Audio out ALC(Auto Level Control) Audio volume by attenator circuit Audio mute 2 I/O ports

Block Diagram

Pin Assignment

TC90L01NG

Pin Description

Pin No.	Name	Function	Interface
1	TV-L in	This pin is for input a left audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to TV-L out, and Mon-L out. The input dynamic range of this pin is 5.0 V _{p-p} and the input resistance is 120 k Ω .	Audio In 120k 4.5V
2	TV-V in	This pin is for input a composite audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to V out, Y out, and C out. The input dynamic range of this pin is 2.0 V_{p-p} and the input resistance is 30 k Ω .	Cout Video In 60k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0
3	TV-R in	This pin is for input a right audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to TV-R out, and Mon-R out. The input dynamic range of this pin is 5.0 V_{p-p} and the input resistance is 120 k Ω .	Audio In 4.5V 4.5V 4.5V
4	V1-V/Y in	This pin is for input a luminance signal or composite video signal from an external source (V1 channel). The signal fed into this pin is presented to V out, Y out, and C out. The input dynamic range of this pin is 2.0 $V_{p\cdot p}$ and the input resistance is 30 k\Omega.	Video In 60k t t t t t t t t t t t t t t t t t t t

Pin No.	Name	Function	Interface
5	V1-L in	This pin is for input a left audio signal from an external source (V1 channel). The signal fed into this pin is presented to TV-L out, and Mon-L out. The input dynamic range of this pin is 5.0 V_{p-p} and the input resistance is 120k Ω .	Audio In 120k 4.5V + Audio Out
6	V1-C in	This pin is for input a chroma signal from an external source (S1 channel). The signal fed into this pin is presented to C out directly and to V out after being combined with the V1-Y in signal. The input dynamic range of this pin is 2.0 V _{p-p} and the input resistance is $30 \text{ k}\Omega$.	Cout Video In 60k 00k 00k 00k 00k 00k 00k 00k 00k 00k
7	V1-R in	This pin is for input a right audio signal from an external source (V1 channel). The signal fed into this pin is presented to TV-R out, and Mon-R out. The input dynamic range of this pin is 5.0 V _{P-P} and the input resistance is 120 k Ω .	Audio In 4.5V
8	V2-V in	This pin is for input a composite video signal from an external source (V2 channel). The signal fed into this pin is presented to V out, Y out, and C out. The input dynamic range of this pin is 2.0 V _{P-P} and the input resistance is $30 \text{ k}\Omega$.	Video In 60k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0k 0

Pin No.	Name	Function	Interface
9	V2-L in	This pin is for input a left audio signal from an external source (V2 channel). The signal fed into this pin is presented to TV-L out and Mon-L out. The input dynamic range of this pin is 5.0 V _{p-p} and the input resistance is 120 Ω .	Audio In 4.5V 4.
10	ALC	This is an detect output pin of ALC[:Auto Level Control]. It controls ALC.	
11	V2-R in	This pin is for input a right audio signal from an external source (V2 channel). The signal fed into this pin is presented to TV-R out and Mon-R out. The input dynamic range of this pin is 5.0 V _{P-P} and the input resistance is 120 k Ω .	Audio In 4.5V 4.
12	V _{CC}	This is the power supply pin. Apply 9 V to this pin. The current consumption of this pin is 34 mA.	—
13	SDA	This is an I ² C bus data input/output pin. The input threshold level of this pin is 3.0 V. Make sure that the current flowing into this pin is 3.0 mA or less.	5.0V (13 SDA (13 SDA (13 SDA (13)

Pin No.	Name	Function	Interface
14	SCL	This is an I ² C bus data input/output pin. The input threshold level of this pin is 3.0 V.	5.0V
15	GND	This is the GND pin.	
16	TV-R out	This pin is for output right audio signal. The signal fed into TV-R in, V1-R in, or V2-R in is outputted from this pin. This outputted can be muted independently of TV-L out by bus control.	Audio Out
17	TV-L out	This pin is for output left audio signal. The signal fed into TV-L in, V1-L in, or V2-L in is outputted from this pin. This output can be muted independently of TV-R out by bus control.	Audio Out
18	Y out	This pin is for output a luminance signal. The signal fed into V1-V/Y in, V2-V in, or TV-V in is outputted from this pin.	Video Out

Pin No.	Name	Function	Interface			
19	I/O— 1	This is an ADC input/DAC output pin. The ADC is a 2-level detection type (1 bits). The threshold level is 3.0 V. The DAC (1 bit) is an open-drain output. Make sure that the current flowing into this pin is 2.0 mA or less.				
20	C out	This pin is for output a chroma signal. The signal fed into V1-C in, V1-V in, V2-V in , or TV-V in is outputted from this pin.	Video Out			
21	1/0-2	This is an ADC input/DAC output pin. The ADC is a 2-level detection type (1 bits). The threshold level is 3.0 V. The DAC (1 bit) is an open-drain output. Make sure that the current flowing into this pin is 2.0 mA or less.				
22	V out	This pin is for output the main channel composite video signal. The signal fed into TV-V in, V1-V in, V2-V in, or V1-Y in +V1-C in is outputted from this pin. This output can be muted by bus control.	Video Out			

Pin No.	Name	Function	Interface				
23	Mon-R out	This pin is for monitor-output right audio signal. The signals fed into the chip via V1-R in, V2-R in, or TV-R in is output from this pin. This output can be muted in combination with Mon-L out by bus control.	Audio Out				
24	Mon-L out	This pin is for monitor-output left audio signal. The signals fed into the chip via V1-L in, V2-L in, or TV-L in is output from this pin. This output can be muted in combination with Mon-R out by bus control.	Audio Out				

Bus Data Specifications

Contents of Data

Mada	Sub	Data No.	Contents of Data								
Mode	Add.	[Preset]		Contents of Data							
		Data 1	B07	B06	B05	B04	B03	B02	B01	B00	
	00	[00H]	*		Gain		0	utput switchii	ng		
		[0011]	*	ALC	Gain	Select-D	Select-C	Select-B	Sele	ect-A	
	01	Data 2 01 [00H]	B17	B16	B15	B14	B13	B12	B11	B10	
Write			Audio Mute	Audio attenator							
		02 Data 3 [03H]	B27	B26	B25	B24	B23	B22	B21	B20	
	02		4	*		*	DAC output switching				
			[0011]	[0011]	*	Ť	*	Ť	*	*	I/O-2
			B37	B36	B35	B34	B33	B32	B31	B30	
Read	_	Data 4	Power on Reset	*	* *		ADC input d	iscrimination		S input discriminati on	
						*	*	I/O-2	I/O-1	V1-C in	

Note1: The data contents marked by a * are an unused bit (data free).

Item	Bits	Descriptions	Preset
Select – A Sub; 00 h,D0~D1 (Note 2)	2	Select input function00: T V01: External 110: External 211: - (Inhibited)	00
Select-B Sub; 00 h,D2	1	CVBS or S-video switching0: CVBS1: S-video	0
Select-C Sub; 00 h,D3	1	Monitor-Video out 0: Normal 1: Mute	0
Select— D Sub; 00 h,D4	1	Monitor-Audio out 0: Normal 1: Mute	0
A L C Level Sub; 00 h,D5~D6	2	Audio Level Control Gain 00: A L C off 01: 1.1Vp-p 10: 1.6Vp-p 11: 2.3Vp-p	10
Audio Vol. Sub; 01h,D0~D6	7	Audio Volume $00: -\infty \sim 7F: 0dB$	00
Audio mute on/off Sub; 01h,D7	1	Audio Mute 0: Normal 1: Mute	0
I/O-* High/Low Sub; 02h,D1,D2	1 × 2	DAC output switching 0: Low 1: High	1

WRITE mode Slave Add.=90H

Note 2 : Select-A = $\{1 \ 1 \ \}$ not use.

READ mode	Slave Add.=91H
-----------	----------------

Item	Bits	Description			
POR	1	Power on Reset			
		0: Normal 1: Resister Preset			
V1-C in	1	S input discrimination			
		0: GND 1: Open			
I/O *	1 × 2	ADC input discrimination			
		0: Low 1: High			

Video Select:	Terminal 22	. 18 .	20 Out	put Signal
		· , · • ,		P

Audio Select: Terminal 17, 16, 24, 23 Output Signal

Mode		Video Output Signal		ianal	Audio Out	put Signal	Bus Data		
		video	nueo Output Signal			put Signai	Input Select		
Input	S/V	V out	Y out	C out	TV-L out	TV-R out	B02	B01	B00
mput	5,	vout	1 Out	Cour	Mon-L out	Mon-R out	В	A	Ą
τv	CVBS	TV-V in	TV-V in	TV-V in	TV-L in	TV-R in	0	0	0
	CVBS	V1-V in	V1-V in	V1-V in	V1-L in	V1-R in	0	0	1
V1	S	V1-Y in + V1-C in	V1-Y in	V1-C in	V1-L in	V1-R in	1	0	1
V2	CVBS	V2-V in	V2-V in	V2-V in	V2-L in	V2-R in	0	1	0
V3	-	_	_	_	_	_	0	1	1

DAC Output Switching

Ma	ode	Bus Data					
IVIC	JUE		DAC Output Switching				
Output	State	B23	B22	B21	B20		
I/O-1	Low	*	*	*	0		
1/0-1	Open	Ť	Ť	ť	1		
I/O-2	Low	*	*	0	*		
110-2	Open	-1-	-1-	1	4.		

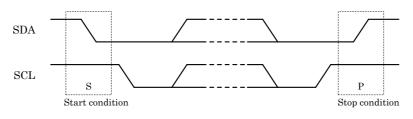
Read Mode

Power-On Reset Discrimination

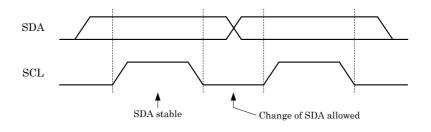
		Bus Data
Мс	ode	Power-On Reset
		B37
Reset	On (Preset)	1
Reset	off (Normal)	0

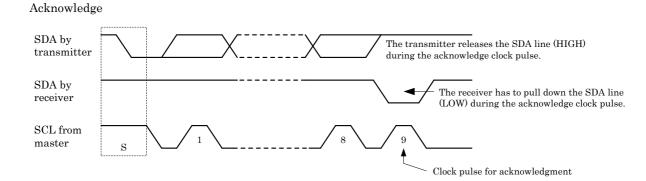
S Input Discrimination

Mc	ode	Bus Data
IVIC	JUE	S Input Discrimination
Input Voltage		B30
V1-C in	High (open)	1
VI-CIII	Low	0


ADC Input Discrimination

Mc	ode	Bus Data						
IVIC	JUE		ADC Input Discrimination					
Input	Voltage	B34	B33	B32	B31			
I/O-1	High	*	*	*	1			
1/0-1	Low	T	÷	÷	0			
I/O-2	High	*	*	1	*			
1/0-2	Low	۰۳.	-tr	0	-14			


Outline of I²C Bus Control Format


DATA TRANSFER FORMAT VIA I²C BUS

Start and stop condition

Bit transfer

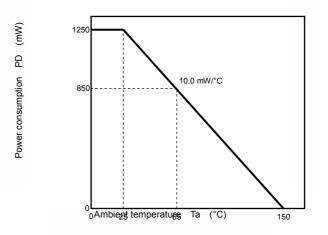
Data transmit format 1			
S Slave address	0 A Sub address	A Transmit data	A P
▲ ↑ 7bit MSB S : Start condition	A ∴ Aslymanyladas	8bit MSB	D: Stop condition
Dat <u>a transmit format 2</u>	A : Acknowledge		P: Stop condition
S Slave address	0 A Sub address	A Transmit data 1	A
	(<u>)</u>	Sub address A Tra	nsmit data n A P
Data received format			
S Slave address	1 A Received data 01	A Received data 02	A P
↑ 7bit MSB	▲ 8bit MSB		

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave. The Stop condition is generated by the master.

Optional data transmit format : automatic increment mode

stional aata transmit format				u	atomatic meremen	0 11	louo			
;	S	Slave address	0	А	1	Sub address	А	Transmit data 1	 Transmit data n	A P
		▲ 7bit			•	7bit		8bit	▲ 8bit	
		MSB			Μ	SB		MSB	MSB	

In this transmission methods, data is set on automatically incremented sub-address from the specified sub-address.


I²C BUS Conditions

Characteristics	Symbol	Min	Тур.	Max	Unit
Low level input voltage	V _{IL}	0	-	1.5	V
High level input voltage	VIH	3.0	-	Vcc	V
Low level output voltage at 3 mA sink current	V _{OL1}	0	-	0.8	V
Input current each I/O pin with an input voltage between 0.1 VDD and 0.9 VDD	li	-10	_	10	μA
Capacitance for each I/O pin	Ci	-	-	10	pF
SCL clock frequency	f _{SCL}	0	-	100	kHz
Hold time START condition	t _{HD;STA}	4.0	-	-	μS
Low period of SCL clock	t _{LOW}	4.7	-	-	μS
High period of SCL clock	t _{HIGH}	4.0	-	-	μS
Set-up time for a repeated START condition	t _{su;sta}	4.7	-	-	μS
Data hold time	t _{HD;DAT}	10	-	-	ns
Data set-up time	t _{SU;DAT}	250	-	-	ns
Set-up time for STOP condition	t _{su;sto}	4.0	-	-	μS
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	-	μS

Absolute Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	11	V
Input Pin Voltage	Vin	GND - 0.3 to Vcc + 0.3	V
Power dissipation	P _{DMAX} (Note3)	1250	mW
Operating temperature	T _{opr}	-20~65	°C
Storage temperature	T _{stg}	-55~150	°C

Note3: When using the device at temperatures above Ta = 25°C, reduce the rated power dissipation by 10.0 mW at TC90L01NG per degree of centigrade. (See the diagram below.)

Operating Conditions

Characteristics	Test Condition	Min	Тур.	Max	Unit	Remark
Supply voltage	12	8.1	9.0	9.9	V	—
Composite signal input amplitude	2, 4, 8	_	1.0	_	V _{p-p}	100IRE
Y input amplitude	4, 8	_	1.0	_	V _{p-p}	100IRE
Chroma input amplitude	6	_	286	_	mV _{p-p}	Burst
Audio input amplitude	1, 3, 5, 7, 9, 11	_	_	3.0	V _{p-p}	—

Electrical Characteristics (referenced to V_{CC} = 9 V at Ta = 25°C unless otherwise specified)

Current Consumption

Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
12	V _{CC}	I _{CC}		20	34	48	mA

Pin Voltage

Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
1	TV-L in	V1		4.3	4.5	4.7	V
2	TV-V in	V2	—	4.1	4.3	4.5	V
3	TV-R in	V3		4.3	4.5	4.7	V
4	V2-V/Y in	V4		4.1	4.3	4.5	V
5	V1-L in	V5		4.3	4.5	4.7	V
6	V1-C in	V6		4.1	4.3	4.5	V
7	V1-R in	V7	_	4.3	4.5	4.7	V
8	V2-V in	V8	_	4.1	4.3	4.5	V
9	V2-L in	V9	—	4.3	4.5	4.7	V
10	ALC	V10	—	_	5.0	_	V
11	V2-R in	V11	—	4.3	4.5	4.7	V
12	V _{cc}	V12	—	_	9.0		V
15	GND	V15	—	_	0	—	V
16	TV-R out	V16	—	4.0	4.5	5.0	V
17	TV-L out	V17	—	4.0	4.5	5.0	V
18	Y out	V18	—	4.0	4.3	4.6	V
19	I/O-1	V19	—	—		—	V
20	C out	V20	—	4.0	4.3	4.6	V
21	I/O-2	V21	—		_	_	V
22	V out	V22	—	4.0	4.3	4.6	V
23	Mon-R out	V23	—	4.2	4.5	4.8	V
24	Mon-L out	V24	—	4.2	4.5	4.8	V

DC Characteristics

Characteristics	Measured Pin	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Remark
	TV-V in	R2	_	20	30	40	kΩ	
	V1-V/Y in	R4		20	30	40	kΩ	
	V2-V in	R8		20	30	40	kΩ	Measure a change ∆l
land alla	V1-C in	R6		20	30	40	kΩ	in the current flowing into each pin when the
Input pin	TV-L in	R1	_	80	120	160	kΩ	voltage is raised by 0.5V. Then calculate
Input resistance	TV-R in	R3	_	80	120	160	kΩ	the input resistance value R.
	V1-L in	R5	_	80	120	160	kΩ	
	V1-R in	R7	_	80	120	160	kΩ	R = 0.5 V/ΔΙ [Ω]
	V2-L in	R9	_	80	120	160	kΩ	
	V2-R in	R11	_	80	120	160	kΩ	
	V out	R22	_	30	50	80	Ω	
	Y out	R18	_	30	50	80	Ω	Measure a voltage
Output pin	C out	R20	_	30	50	80	Ω	change ΔV on each pin when a current of 100 μA flows into the pin. Then calculate the
O to the standard standard	TV-L out	R17	_	30	50	80	Ω	
Output resistance	TV-R out	R16	_	30	50	80	Ω	output resistance value R.
	Mon-L out	R24		30	50	80	Ω	R = ΔV/100 μA [Ω]
	Mon-R out	R23		30	50	80	Ω	
S mode discrimination voltage	V1-C in	VthC1		2.0	2.5	3.0	V	Voltage on pin 6 at which data B30 changes.
ADC input discrimination	I/O 1	VthI1	_	2.5	3.0	3.5	V	High-Low threshold level of I/O-1 input (pin 19).
voltage	I/O 2	VthI2	_	2.5	3.0	3.5	V	High-Low threshold level of I/O-2 input (pin 21).

AC Characteristics

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2V1	_	1.5	_	_	V _{p-p}	(1) Apply a 15 kHz
V out	V1-V/Y in	VDR4V1	_	1.5	—.	_	V _{p-p}	sine wave to each input pin. (2) In each select
Input dynamic range	V2-V in	VDR8V1	_	1.5	_	_	V _{p-p}	mode, measure an input amplitude at which the output waveform on pin
	V2-C in	VDR6V1	_	1.5	_	_	V _{p-p}	22 begins to be distorted.
	TV-V in	G2V1	_	5.5	6.0	6.5	dB	
V out	V1-V/Y in	G4V1	_	5.5	6.0	6.5	dB	(1) Apply a 15 kHz, 1.0 V _{p-p} sine wave to each input pin.
Gain	V2-V in	G8V1		5.5	6.0	6.5	dB	(2) In each select mode, find the gain between input and output.
	V2-C in	G6V1	_	5.5	6.0	6.5	dB	
	TV-V in	F2V1		15	_	_	MHz	(1) Apply a 1.0 V _{p-p} sine wave to each
V out	V1-V/Y in	F4V1		15	_	—	MHz	input pin. (2) In each select mode, measure a
Frequency response	V2-V in	F8V1		15	_	_	MHz	frequency at which the output amplitude on pin 22 is 3dB down
	V2-C in	F6V1		15	_	_	MHz	from the 15 kHz applied level.
	TV-V in	CT2V1	_	60	70	—	dB	(1) Apply a 3.58 MHz, 1.0 V _{p-p} sine wave
V out Crosstalk	V1-V/Y in	CT4V1	_	60	70	_	dB	(2) In each select mode, compare
	V2-V in	CT8V1	_	60	70	_	dB	signal output from the selected pin with leakage components from
	V2-C in	CT6V1	_	60	70	_	dB	to find a crosstalk.

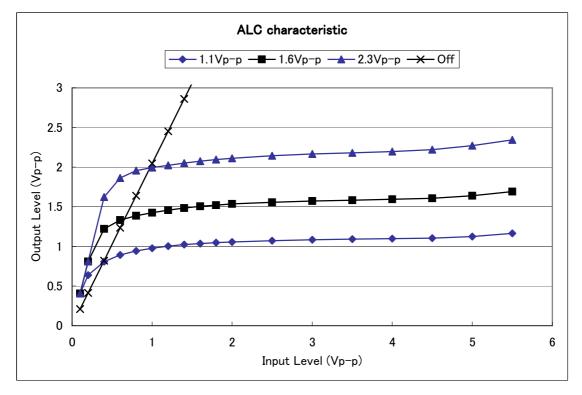
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2Y		3.0	4.0		V _{p-p}	(1) Apply a 15 kHz sine wave to each input pin.
Y out Input dynamic range	V1-V/Y in	VDR4Y	_	3.0	4.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at
	V2-V in	VDR8Y	_	3.0	4.0	_	V _{p-p}	which the output waveform on pin 18 begins to be distorted.
	TV-V in	G2Y	_	-0.5	0	0.5	dB	(1) Apply a 15 kHz,
Y out Gain	V1-V/Y in	G4Y		-0.5	0	0.5	dB	 1.0 V_{p-p} sine wave to each input pin. In each select mode, find the gain between input and output.
	V2-V in	G8Y	_	-0.5	0	0.5	dB	
	TV-V in	F2Y		15			MHz	 Apply a 1.0 V_{p-p} sine wave to each input pin. In each select
Y out Frequency response	V1-V/Y in	F4Y	_	15		_	MHz	mode, measure a frequency at which the output amplitude on pin
	V2-V in	F8Y	_	15	_	—	MHz	18 is 3dB down from the 15 kHz applied level.
Y out Crosstalk	TV-V in	CT2Y	_	60	70	_	dB	 (1) Apply a 3.58 MHz, 1.0 V_{p-p} sine wave to each input pin. (2) In each select
	V1-V/Y in	CT4Y		60	70		dB	mode, compare signal output from the selected pin
	V2-V in	CT8Y		60	70	_	dB	with leakage components from nonselected pins to find a crosstalk.

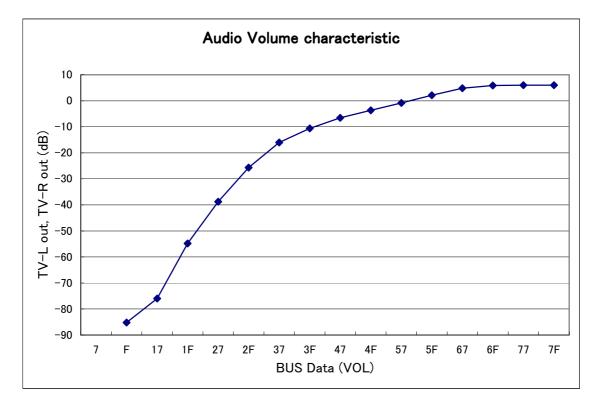
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-V in	VDR2C	_	1.5	2.0	_	V _{p-p}	(1) Apply a 3.58MHz
C out	V1-V/Y in	VDR4C	_	1.5	2.0	—	V_{p-p}	sine wave to each input pin.
Input dynamic range	V2-V in	VDR8C	_	1.5	2.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at which the output waveform on pin
	V2-C in	VDR6C		1.5	2.0	_	V _{p-p}	20 begins to be distorted.
	TV-V in	G2C		-0.5	0	0.5	dB	
C out	V1-V/Y in	G4C	_	-0.5	0	0.5	dB	 Apply a 15 kHz, 1.0 V_{p-p} sine wave to each input pin. In each select mode, find the gain between input and output.
Gain	V2-V in	G8C	_	-0.5	0	0.5	dB	
	V2-C in	G6C	_	-0.5	0	0.5	dB	
	TV-V in	F2C	_	15			MHz	(1) Apply a 1.0 V _{p-p}
C out	V1-V/Y in	F4C		15	_	_	MHz	sine wave to each input pin. (2) In each select mode, measure a frequency at which
Frequency response	V2-V in	F8C	_	15			MHz	the output amplitude on pin 20 is 3dB down from the 15 kHz
	V2-C in	F6C	_	15	_	_	MHz	applied level.
	TV-V in	CT2C	_	60	70		dB	(1) Apply a 3.58 MHz,
C out Crosstalk	V1-V/Y in	CT4C	_	60	70		dB	 1.0 V_{p-p} sine wave to each input pin. (2) In each select mode, compare signal output from the selected pin with leakage components from nonselected pins
	V2-V in	CT8C	_	60	70	_	dB	
	V2-C in	CT6C		50	55		dB	to find a crosstalk.

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
TV-L out	TV-L in	VDR1L1		3.0	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
Input dynamic range	V1-L in	VDR5L1	_	3.0	5.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at
	V2-L in	VDR9L1		3.0	5.0		V _{p-p}	which the output waveform on pin 17 begins to be distorted.
TV-L out	TV-L in	G1L1		4.0	6.0	8.0	dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave
Gain	V1-L in	G5L1		4.0	6.0	8.0	dB	to each input pin. (2) In each select mode, find the gain between input and output. (3) ALC:Off
	V2-L in	G9L1	_	4.0	6.0	8.0	dB	
	TV-L in	VOL1L1		1.1	1.6	2.1	V _{p-p}	 (1) Apply a 1 kHz, 2.0 V_{p-p} sine wave to each input pin.
TV-L out	V1-L in	VOL5L1	_	1.1	1.6	2.1	V _{p-p}	Vol:7F
Output level	V2-L in	VOL9L1		1.1	1.6	2.1	V _{p-p}	(2) In each select mode, measure an output amplitude at pin 17.
								(3) ALC:"1.6Vp-p"
77.4	*	GANL1		-4.0	-3.0	-2.0	dB	 Set ALC level "1.1Vpp" and measure output level changes.
TV-L out ALC level Min.								Vol:7F
ALC level Max.	*	GAXL1		2.0	3.0	4.0	dB	(2) Set ALC level "2.3Vpp" and measure output level changes.
								Vol:7F
The set	TV-L in	F1L1		0.1			MHz	 Apply a 1.0 V_{p-p} sine wave to each input pin.
TV-L out Frequency response	V1-L in	F5L1	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which the output amplitude
	V2-L in	F9L1	_	0.1	_	_	MHz	on pin 17 is 3dB down from the 1 kHz applied level.
TV-L out	TV-L in	CT1L1	_	70	80	_	dB	 Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. In each select

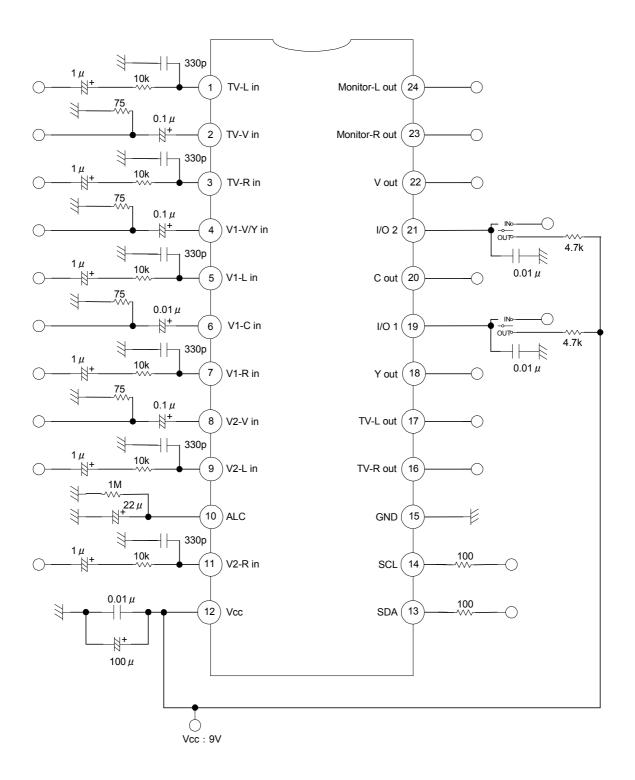
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
Crosstalk	V1-L in	CT5L1	_	70	80	—	dB	mode, compare signal output from the selected pin with leakage
	V2-L in	CT9L1	_	70	80	_	dB	components from nonselected pins to find a crosstalk.
TV-L out Mute attenuation	TV-L in	M1L1	_	70	90	_	dB	 Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. In each select mode, compare the output amplitudes on pin 17 when mute is
	V1-L in	M5L1		70	90	—	dB	
	V2-L in	M9L1		70	90		dB	turned on and turned off to find mute attenuation.

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
TV-R out	TV-R in	VDR3R1		3.0	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
Input dynamic range	V1-R in	VDR7R1	_	3.0	5.0	_	V _{p-p}	(2) In each select mode, measure an input amplitude at
	V2-R in	VDR11R1		3.0	5.0	_	V _{p-p}	which the output waveform on pin 16 begins to be distorted.
	TV-R in	G3R1	_	4.0	6.0	8.0	dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave
TV-R out Gain	V1-R in	G7R1		4.0	6.0	8.0	dB	to each input pin. (2) In each select mode, find the gain between
	V2-R in	G11R1	_	4.0	6.0	8.0	dB	input and output. (3) ALC:Off
	TV-R in	VOL3R1	_	1.1	1.6	2.1	V _{p-p}	 (1) Apply a 1 kHz, 2.0 V_{p-p} sine wave to each input pin.
TV-R out	V1-R in	VOL7R1		1.1	1.6	2.1	V _{p-p}	Vol:7F
Output level	V2-R in	VOL11R1		1.1	1.6	2.1	V _{p-p}	(2) In each select mode, measure an output amplitude at pin 16.
								(3) ALC:"1.6Vp-p"
	*	GANR1		-4.0	-3.0	-2.0	dB	 Set ALC level "1.1Vpp" and measure output level changes.
TV-R out ALC level Min. ALC level Max.	*	GAXR1	_	2.0	3.0	4.0	dB	Vol:7F (2) Set ALC level "2.3Vpp" and measure output level changes. Vol:7F
	TV-R in	F3R1		0.1			MHz	(1) Apply a 1.0 V _{p-p} sine wave to each input pin.
TV-R out Frequency response	V1-R in	F7R1	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which
	V2-R in	F11R1		0.1	_	_	MHz	the output amplitude on pin 16 is 3dB down from the 1 kHz applied level.
TV-R out Crosstalk	TV-R in	CT3R1	_	70	80		dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. (2) In each select

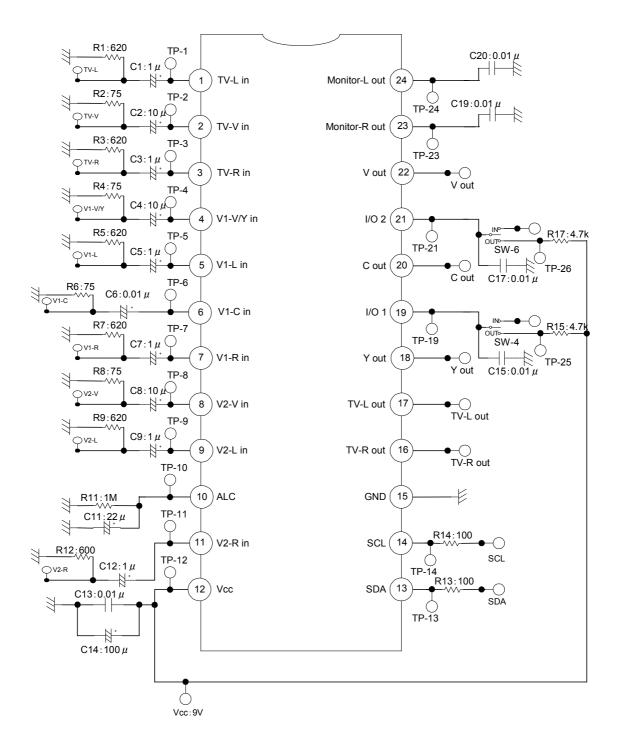

Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	V1-R in	CT7R1		dB	mode, compare signal output from the selected pin with leakage			
	V2-R in	CT11R1	_	70	80		dB	components from nonselected pins to find a crosstalk.
TV-R out Mute attenuation	TV-R in	M3R1	_	70	90		dB	 Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. In each select mode, compare the output amplitudes on pin 16 when mute is
	V1-R in	M7R1		70	90		dB	
	V2-R in	M11R1		70	90		dB	turned on and turned off to find mute attenuation.


TC90L01NG

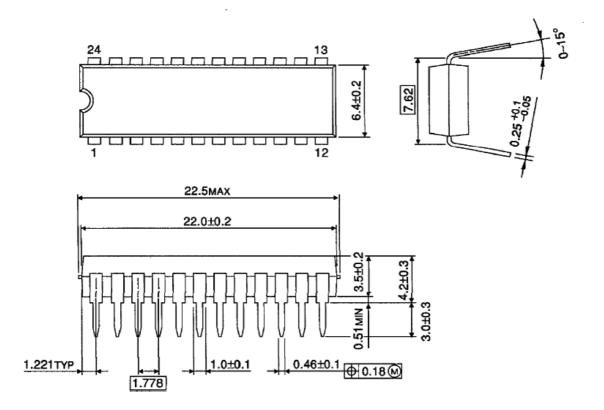
Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-L in	VDR1L2		3.5	5.0	_	V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin. (2) In each select
Mon-L out Input dynamic range	V1-L in	VDR5L2	_	3.5	5.0		V _{p-p}	an input amplitude at which the output
	V2-L in	VDR9L2	_	3.5	5.0	_	V _{p-p}	waveform on pin 24 begins to be distorted.
Mariliant	TV-L in	G1L2	_	-0.5	0	0.5	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine
Mon-L out Gain	V1-L in	G5L2	_	-0.5	0	0.5	dB	wave to each input pin. (2) In each select mode, find the gain
	V2-L in	G9L2	—	-0.5	0	0.5	dB	between input and output.
	TV-L in	F1L2	_	0.1	_	_	MHz	 (1) Apply a 1.0 V_{p-p} sine wave to each input pin. (2) In each select
Mon-L out Frequency response	V1-L in	F5L2	_	0.1	_	_	MHz	(2) In each select mode, measure a frequency at which the output amplitude on pin
	V2-L in	F9L2	_	0.1	_	_	MHz	24 is 3dB down from the 1 kHz applied level.
	TV-L in	CT1L2	_	70	90	_	dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin.
Mon-L out Crosstalk	V1-L in	CT5L2	_	70	90		dB	(2) In each select mode, compare signal output from the selected pin with leakage
	V2-L in	CT9L2	_	70	90		dB	components from nonselected pins to find a crosstalk.
Mon-L out Mute attenuation	TV-L in	M1L2	—	70	80		dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. (2) In each select
	V1-L in	M5L2	_	70	80		dB	(2) In each select mode, compare the output amplitudes on pin 24 when mute is
	V2-L in	M9L2	—	70	80		dB	turned on and turned off to find mute attenuation.


Characteristics	Select Mode	Symbol	Test Circuit	Min.	Тур.	Max.	Unit	Test Method
	TV-R in	VDR3R2		3.5	5.0		V _{p-p}	(1) Apply a 1 kHz sine wave to each input pin.
Mon-R out Input dynamic range	V1-R in	VDR7R2	_	3.5	5.0	_	V _{p-p}	(2) In each select mode, measure an input
	V2-R in	VDR11R2	_	3.5	5.0	_	V _{p-p}	amplitude at which the output waveform on pin 23 begins to be distorted.
Man D out	TV-R in	G3R2	_	-0.5	0	0.5	dB	(1) Apply a 1 kHz, 1.0 V _{p-p} sine
Mon-R out Gain	V1-R in	G7R2		-0.5	0	0.5	dB	wave to each input pin. (2) In each select mode, find the gain
	V2-R in	G11R2	_	-0.5	0	0.5	dB	between input and output.
	TV-R in	F3R2		0.1	_	_	MHz	 (1) Apply a 1.0 V_{p-p} sine wave to each input pin. (2) In each select
Mon-R out Frequency response	V1-R in	F7R2		0.1	_	—	MHz	(2) In each select mode, measure a frequency at which the output amplitude on pin
	V2-R in	F11R2		0.1	_	_	MHz	23 is 3dB down from the 1 kHz applied level.
	TV-R in	CT3R2	_	70	90	_	dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. (2) In each select
Mon-R out Crosstalk	V1-R in	CT7R2		70	90	—	dB	(2) In each select mode, compare signal output from the selected pin with leakage
	V2-R in	CT11R2		70	90	_	dB	components from nonselected pins to find a crosstalk.
Mon-R out Mute attenuation	TV-R in	M3R2		70	80		dB	 (1) Apply a 1 kHz, 1.0 V_{p-p} sine wave to each input pin. (2) be cache coloct
	V1-R in	M7R2	_	70	80	_	dB	(2) In each select mode, compare the output amplitudes on pin 23 when mute is
	V2-R in	M11R2		70	80		dB	turned on and turned off to find mute attenuation.

Reference data



Application Circuit



<u>TOSHIBA</u>

Test Circuit

Package Dimensions

Weight: 1.22 g (typ.)

<u>TOSHIBA</u>

About solderability, following conditions were confirmed.
· Solderability
(1) Use of Sn-37Pb solder Bath
 solder bath temperature = 230°C
 dipping time = 5 seconds
 the number of times = once
 use of R-type flux

- (2) Use of Sn-3.0Ag-0.5Cu solder
 - solder bath temperature = 245°C
 - dipping time = 5 seconds
 - the number of times = once

RESTRICTIONS ON PRODUCT USE

030619EBA

The information contained herein is subject to change without notice.

- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.