Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Rev. 01 — 3 July 2007

Product data sheet

1. General description

The 74AVCH2T45 is a dual bit, dual supply transceiver that enables bidirectional level translation. It features two data input-output ports (nA and nB), a direction control input (DIR) and dual supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins nA and DIR are referenced to $V_{CC(A)}$ and pins nB are referenced to $V_{CC(B)}$. A HIGH on DIR allows transmission from nA to nB and a LOW on DIR allows transmission from nB to nA.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B are in the high-impedance OFF-state.

The 74AVCH2T45 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features

- Wide supply voltage range:
 - V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)

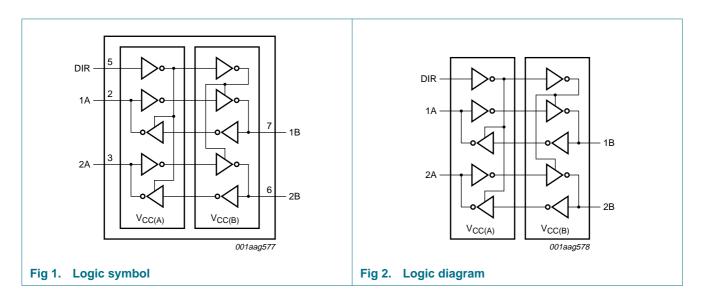
ESD protection:

- HBM JESD22-A114E Class 3B exceeds 8000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - 500 Mbps (1.8 V to 3.3 V translation)
 - ◆ 320 Mbps (< 1.8 V to 3.3 V translation)
 - 320 Mbps (translate to 2.5 V or 1.8 V)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

- 280 Mbps (translate to 1.5 V)
- ◆ 240 Mbps (translate to 1.2 V)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- SOT765-1 and SOT833-1 package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

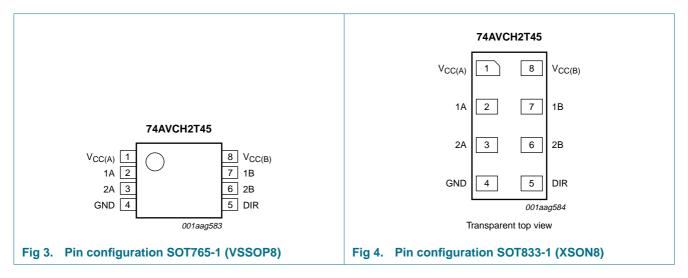
3. Ordering information


Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AVCH2T45DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74AVCH2T45GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1

4. Marking

Table 2. Marking					
Type number	Marking code				
74AVCH2T45DC	K45				
74AVCH2T45GT	K45				


5. Functional diagram

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
V _{CC(A)}	1	supply voltage port A and DIR
1A	2	data input or output
2A	3	data input or output
GND	4	ground (0 V)
DIR	5	direction control
2B	6	data input or output
1B	7	data input or output
V _{CC(B)}	8	supply voltage port B

7. Functional description

Table 4.Function table^[1]

Supply voltage	Input	Input/output ^[2]			
V _{CC(A)} , V _{CC(B)}	DIR ^[3]	nA	nB		
0.8 V to 3.6 V	L	nA = nB	input		
0.8 V to 3.6 V	Н	input	nB = nA		
GND ^[4]	Х	Z	Z		

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] The input circuit of the data I/O is always active.

[3] The DIR input circuit is referenced to $V_{CC(A)}$.

[4] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			-		-
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage port A		-0.5	+4.6	V
V _{CC(B)}	supply voltage port B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	<u>[1][2][3]</u> –0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	<u>[4]</u> _	250	mW
-					

[1] The minimum input voltage rating and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 4.6 V.

[4] For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 package: above 45 °C the value of P_{tot} derates linearly with 2.4 mW/K.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage port A		0.8	3.6	V
V _{CC(B)}	supply voltage port B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	<u>[1]</u> 0	V _{cco}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V _{CCI} =0.8 V to 3.6 V	-	5	ns/V

[1] V_{CCO} is the supply voltage associated with the output port.

10. Static characteristics

Table 7. Static characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
T _{amb} = 2	5 °C						
V _{ОН}	HIGH-level output	$V_{I} = V_{IH}$					
	voltage	$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$		-	0.69	-	V
V _{OL}	LOW-level output	$V_{I} = V_{IL}$			0.07 -		
	voltage	I_{O} = 1.5 mA; $V_{CC(A)}$ = $V_{CC(B)}$ = 0.8 V		-	0.07	-	V
lı	input leakage current	DIR input; $V_1 = GND$ to $V_{CC(A)}$; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V		-	±0.025	±0.25	μA
I _{BHL}	bus hold LOW current	$V_{I} = 0.42 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$		-	26	-	μA
I _{BHH}	bus hold HIGH current	$V_{I} = 0.78 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$		-	-24	-	μA
I _{BHLO}	bus hold LOW overdrive current	$V_I = GND$ to V_{CCI} ; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	<u>[1]</u>	-	28	-	μA
І _{внно}	bus hold HIGH overdrive current		[1]	-	-26	-	μA
l _{oz}	OFF-state output current	A or B port; $V_O = GND$ or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	[2]	-	±0.5	±2.5	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V		-	±0.1	±1.0	μA
		B port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V		-	±0.1	±1.0	μA
CI	input capacitance	DIR input; $V_I = GND$ or 3.3 V; $V_{CC(A)} = V_{CC(B)} = 3.3 V$		-	1.0	-	pF
C _{I/O}	input/output capacitance	A and B port; suspend mode; $V_O = V_{CCO}$ or GND; $V_{CC(A)} = V_{CC(B)} = 3.3 V$	[2]	-	4.0	-	pF
T _{amb} = -	40 °C to +85 °C						
V _{IH}	HIGH-level input	data input	<u>[1]</u>				
	voltage	$V_{CCI} = 0.8 V$		$0.70 \times V_{\text{CCI}}$	-	-	V
		V _{CCI} = 1.1 V to 1.95 V		$0.65 \times V_{\text{CCI}}$	-	-	V
		V_{CCI} = 2.3 V to 2.7 V		1.6	-	-	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		2.0	-	-	V
		DIR input	[1]				
		$V_{CCI} = 0.8 V$		$0.70 \times V_{\text{CC(A)}}$	-	-	V
		$V_{CCI} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.65 imes V_{CC(A)}$	-	-	V
		V_{CCI} = 2.3 V to 2.7 V		1.6	-	-	V
		V_{CCI} = 3.0 V to 3.6 V		2.0	-	-	V

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 7. Static characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL		data input	<u>[1]</u>			
	voltage	$V_{CCI} = 0.8 V$	-	-	$0.30 \times V_{\text{CCI}}$	V
		V _{CCI} = 1.1 V to 1.95 V	-	-	$0.35 \times V_{CCI}$	V
		V_{CCI} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CCI} = 3.0 \text{ V}$ to 3.6 V	-	-	0.9	V
		DIR input	<u>[1]</u>			
		$V_{CCI} = 0.8 V$	-	-	$0.30 \times V_{CC(A)}$	V
		V _{CCI} = 1.1 V to 1.95 V	-	-	$0.35 \times V_{CC(A)}$	V
		V_{CCI} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
Vон	HIGH-level output	$V_{I} = V_{IH}$				
	voltage	$I_{O} = -100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	[2] V _{CCO} – 0.1	-	-	V
		$I_{O} = -3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	-	V
		$I_{O} = -6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IL}$				
		$I_{O} = 100 \ \mu\text{A};$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	-	-	0.1	V
		$I_{O} = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	-	-	0.25	V
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	-	0.35	V
		$I_{O} = 8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-	-	0.45	V
		$I_{O} = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	-	0.55	V
		$I_O = 12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	-	0.7	V
I	input leakage current	DIR input; $V_I = GND$ to $V_{CC(A)}$; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	-	-	±1.0	μΑ
BHL	bus hold LOW	$V_{I} = 0.49 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	15	-	-	μΑ
	current	$V_{I} = 0.58 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	25	-	-	μΑ
		$V_{I} = 0.70 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	45	-	-	μΑ
		$V_{I} = 0.80 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	100	-	-	μΑ
внн	bus hold HIGH	$V_I = 0.91 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-15	-	-	μΑ
	current	$V_I = 1.07 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-25	-	-	μΑ
		$V_I = 1.60 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-45	-	-	μΑ
		$V_{I} = 2.00 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-100			μA

NXP Semiconductors

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 7. Static characteristics ...continued

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{BHLO}	bus hold LOW	$V_I = GND$ to V_{CCI}	<u>[1]</u>				
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$		125	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 1.95 V$		200	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		300	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		500	-	-	μΑ
I _{BHHO}	bus hold HIGH	$V_I = GND$ to V_{CCI}	<u>[1]</u>				
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 V$		-125	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 1.95 V$		-200	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		-300	-	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		-500	-	-	μΑ
l _{oz}	OFF-state output current	A or B port; $V_O = GND$ or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	[2]	-	-	±5.0	μA
I _{OFF}	power-off leakage current	A port; V _I or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V		-	-	±5.0	μA
		B port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V		-	-	±5.0	μA
lcc	supply current	A port; $V_I = GND$ or V_{CCI} ; $I_O = 0$ A	[1]				
		$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$		-	-	8.0	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	-	8.0	μΑ
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$		-2	0	-	μΑ
		B port; $V_I = GND$ or V_{CCI} ; $I_O = 0$ A	[1]				
		$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$		-	-	8	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-2	0	-	μΑ
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$		-	-	8	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; V _I = GND or V _{CCI} ;	[1]	-	-	16	μA
-	40 °C to +125 °C	$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$					
	HIGH-level input	dete input	[1]				
V _{IH}	voltage	data input		$0.70 imes V_{CCI}$			V
	0	V _{CCI} = 0.8 V V _{CCI} = 1.1 V to 1.95 V			-	-	V
				$0.65 \times V_{CCI}$	-	-	V
		$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$		1.6	-	-	
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[1]	2.0	-	-	V
		DIR input	<u>1-1</u>	0.70 × 1/			V
		$V_{CCI} = 0.8 V$		$0.70 \times V_{CC(A)}$		-	
		$V_{CCI} = 1.1 \text{ V to } 1.95 \text{ V}$		$0.65 \times V_{CC(A)}$	-	-	V
		$V_{CCI} = 2.3 V \text{ to } 2.7 V$		1.6	-	-	V
		$V_{CCI} = 3.0 V \text{ to } 3.6 V$		2.0	-	-	V

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 7. Static characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VIL	IL LOW-level input voltage	data input	<u>[1]</u>			
	voltage	$V_{CCI} = 0.8 V$	-	-	$0.30 \times V_{\text{CCI}}$	V
		V _{CCI} = 1.1 V to 1.95 V	-	-	$0.35 \times V_{CCI}$	V
		V_{CCI} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CCI} = 3.0 \text{ V}$ to 3.6 V	-	-	0.9	V
		DIR input	<u>[1]</u>			
		$V_{CCI} = 0.8 V$	-	-	$0.30 \times V_{\text{CC(A)}}$	V
		V _{CCI} = 1.1 V to 1.95 V	-	-	$0.35 \times V_{CC(A)}$	V
		V_{CCI} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{OH}	HIGH-level output	$V_{I} = V_{IH}$				
	voltage	$I_{O} = -100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	[2] V _{CCO} – 0.1	-	-	V
		$I_{O} = -3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	-	V
		$I_{O} = -6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IL}$				
		$I_{O} = 100 \ \mu\text{A};$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	-	-	0.1	V
		$I_{O} = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	-	-	0.25	V
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	-	0.35	V
		$I_{O} = 8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-	-	0.45	V
		$I_{O} = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	-	0.55	V
		$I_O = 12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	-	0.7	V
I	input leakage current	DIR input; $V_I = GND$ to $V_{CC(A)}$; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	-	-	±1.5	μΑ
BHL	bus hold LOW	$V_{I} = 0.49 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	15	-	-	μΑ
	current	$V_{I} = 0.58 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	25	-	-	μΑ
		$V_{I} = 0.70 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	45	-	-	μΑ
		$V_{I} = 0.80 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	90	-	-	μΑ
внн	bus hold HIGH	$V_I = 0.91 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-15	-	-	μΑ
	current	$V_{I} = 1.07 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-25	-	-	μΑ
		$V_I = 1.60 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-45	-	-	μΑ
		$V_{I} = 2.00 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-100	-	-	μA

NXP Semiconductors

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{BHLO}	bus hold LOW	$V_I = GND$ to V_{CCI}	<u>[1]</u>			
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 V$	125	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 1.95 V$	200	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$	300	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 3.6 V$	500	-	-	μA
І _{внно}	bus hold HIGH	$V_I = GND$ to V_{CCI}	<u>[1]</u>			
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 V$	-125	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 1.95 V$	-200	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$	-300	-	-	μA
		$V_{CC(A)} = V_{CC(B)} = 3.6 V$	-500	-	-	μA
l _{oz}	OFF-state output current	A or B port; $V_O = GND$ or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	[2] -	-	±7.5	μA
OFF	power-off leakage current	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	-	±35	μA
		B port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V	-	-	±35	μA
сс	supply current	A port; $V_I = GND$ or V_{CCI} ; $I_O = 0$ A	[1]			
		$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	11.5	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	-	11.5	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$	-8	0	-	μA
		B port; $V_I = GND$ or V_{CCI} ; $I_O = 0$ A	<u>[1]</u>			
		$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	11.5	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-8	0	-	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$	-	-	11.5	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; V _I = GND or V _{CCI} ; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	<u>[1]</u> -	-	23	μΑ

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

11. Dynamic characteristics

Table 8. Dynamic characteristics

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	125 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)		
$V_{CC(A)} =$	0.8 V									
t _{pd}	propagation delay	A to B; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	15.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	8.4	-	-	-	-	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	8.0	-	-	-	-	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	8.0	-	-	-	-	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	8.7	-	-	-	-	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	9.5	-	-	-	-	ns
		B to A; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	15.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	12.7	-	-	-	-	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	12.4	-	-	-	-	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		-	12.0	-	-	-	-	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	11.8	-	-	-	-	ns
t _{dis}	disable time	DIR to A; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		-	12.2	-	-	-	-	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	12.2	-	-	-	-	ns
		DIR to B; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	11.7	-	-	-	-	ns
		V _{CC(B)} = 1.1 V to 1.3 V		-	7.9	-	-	-	-	ns
		V _{CC(B)} = 1.4 V to 1.6 V		-	7.6	-	-	-	-	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	8.2	-	-	-	-	ns
		$V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$		-	8.7	-	-	-	-	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	10.2	-	-	-	-	ns

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	125 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	DIR to A; see Figure 6	<u>[4][5]</u>							
		$V_{CC(B)} = 0.8 V$		-	27.5	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	20.6	-	-	-	-	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	20.0	-	-	-	-	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	20.4	-	-	-	-	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	20.7	-	-	-	-	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	22.0	-	-	-	-	ns
		DIR to B; see Figure 6	<u>[4][5]</u>							
		$V_{CC(B)} = 0.8 V$		-	28.0	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	20.6	-	-	-	-	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	20.2	-	-	-	-	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	20.2	-	-	-	-	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	20.9	-	-	-	-	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	21.7	-	-	-	-	ns
$V_{CC(A)} =$	1.1 V to 1.3 V									
t _{pd}	propagation delay	A to B; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	12.7	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	9.0	9.9	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.7	6.8	7.5	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.6	6.1	6.8	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.5	5.7	6.3	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	0.5	6.1	6.8	ns
		B to A; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	8.4	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	9.0	9.9	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.8	8.0	8.8	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.7	7.7	8.5	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.6	7.2	8.0	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	0.5	7.1	7.9	ns

Table 8. Dynamic characteristics ...continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +1	I 25 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
t _{dis}	disable time	DIR to A; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	4.9	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$		-	-	-	2.2	8.8	9.7	ns
		DIR to B; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	9.2	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	2.2	8.4	9.2	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	1.8	6.7	7.4	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	2.0	6.9	7.6	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	1.7	6.2	6.9	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	2.4	7.2	8.0	ns
t _{en}	enable time	DIR to A; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	17.6	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	17.4	19.1	ns
		$V_{CC(B)} = 1.4 V \text{ to } 1.6 V$		-	-	-	-	14.7	16.2	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	14.6	16.1	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	13.4	14.9	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	-	14.3	15.9	ns
		DIR to B; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	17.6	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	17.8	19.6	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	15.6	17.2	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	14.9	16.5	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	14.5	16.0	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	-	14.9	16.5	ns

Table 8. Dynamic characteristics ...continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

25 °C –40 °C to +125 °C Symbol Parameter Conditions Unit Max Min Typ[1] Max Min Max (85 °C) (125 °C) V_{CC(A)} = 1.4 V to 1.6 V [2] propagation delay A to B; see Figure 5 t_{pd} $V_{CC(B)} = 0.8 V$ 12.4 ns -----V_{CC(B)} = 1.1 V to 1.3 V ---1.0 8.0 8.8 ns V_{CC(B)} = 1.4 V to 1.6 V 0.7 5.4 6.0 _ _ ns $V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$ 4.6 5.1 0.6 ns --- $V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$ 4.1 -0.5 3.7 -ns V_{CC(B)} = 3.0 V to 3.6 V 3.9 -0.5 3.5 ns --B to A; see Figure 5 [2] $V_{CC(B)} = 0.8 V$ 8.0 --_ -ns V_{CC(B)} = 1.1 V to 1.3 V _ 1.0 6.8 7.5 ns -- $V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$ -0.8 5.4 6.0 -ns 5.7 V_{CC(B)} = 1.65 V to 1.95 V 0.7 5.1 --ns V_{CC(B)} = 2.3 V to 2.7 V 0.6 4.7 5.2 ns ---V_{CC(B)} = 3.0 V to 3.6 V 0.5 4.5 5.0 --ns [3] disable time DIR to A; see Figure 6 t_{dis} $V_{CC(B)} = 0.8 V$ 3.8 ns -----V_{CC(B)} = 1.1 V to 3.6 V 7.0 -1.6 6.3 -ns DIR to B; see Figure 6 [3] $V_{CC(B)} = 0.8 V$ -9.0 ---ns V_{CC(B)} = 1.1 V to 1.3 V -2.0 7.6 8.3 ns -V_{CC(B)} = 1.4 V to 1.6 V 1.8 5.9 6.5 --_ ns $V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$ 1.6 6.0 6.6 --ns $V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$ 1.2 4.8 5.3 --ns $V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$ 5.5 1.7 6.1 --_ ns

Table 8. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7.

74AVCH2T45 1

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	125 °C	Unit
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	DIR to A; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	17.0	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	14.4	15.8	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	11.3	12.5	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	11.1	12.3	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	9.5	10.5	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	10.0	11.1	ns
		DIR to B; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	16.2	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	14.3	15.8	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	11.7	13.0	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	10.9	12.7	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	10.0	11.1	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	-	9.8	10.9	ns
$V_{CC(A)} =$	1.65 V to 1.95 V									
t _{pd}	propagation delay	A to B; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	12.2	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	7.7	8.5	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.6	5.1	5.7	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.5	4.3	4.8	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.5	3.4	3.8	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	0.5	3.1	3.5	ns
		B to A; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	8.0	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	6.1	6.8	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.7	4.6	5.1	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.5	4.4	4.9	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.5	3.9	4.3	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	0.5	3.7	4.1	ns

Table 8. Dynamic characteristics ...continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	25 °C	Unit
				Min	Тур <u>[1]</u>	Max	Min	Max (85 °C)	Max (125 °C)	
t _{dis}	disable time	DIR to A; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	3.7	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$		-	-	-	1.6	5.5	6.1	ns
		DIR to B; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	8.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.8	7.8	8.6	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	1.8	5.7	6.3	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	1.4	5.8	6.4	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	1.0	4.5	5.0	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	1.5	5.2	5.8	ns
t _{en}	enable time	DIR to A; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	16.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	13.9	15.4	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	10.3	11.4	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	10.2	11.3	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	8.4	9.3	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	8.9	9.9	ns
		DIR to B; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	15.9	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	13.2	14.6	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	10.6	11.8	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	9.8	10.9	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	8.9	9.9	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	-	8.6	9.6	ns

Table 8. Dynamic characteristics ... continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

25 °C –40 °C to +125 °C Symbol Parameter Conditions Unit Max Min Typ[1] Max Min Max (85 °C) (125 °C) V_{CC(A)} = 2.3 V to 2.7 V [2] propagation delay A to B; see Figure 5 t_{pd} $V_{CC(B)} = 0.8 V$ 12.0 ns -----V_{CC(B)} = 1.1 V to 1.3 V ---1.0 7.2 8.0 ns V_{CC(B)} = 1.4 V to 1.6 V 0.5 4.7 5.2 _ _ ns $V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$ 0.5 4.3 3.9 --ns $V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$ 3.0 -0.5 3.3 -ns V_{CC(B)} = 3.0 V to 3.6 V -0.5 2.6 2.9 ns --B to A; see Figure 5 [2] $V_{CC(B)} = 0.8 V$ 8.7 -_ --ns V_{CC(B)} = 1.1 V to 1.3 V _ 1.0 5.7 6.3 ns -- $V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$ -0.6 3.8 4.2 -ns 3.8 V_{CC(B)} = 1.65 V to 1.95 V 0.5 3.4 --ns V_{CC(B)} = 2.3 V to 2.7 V 0.5 3.0 3.3 ns ---V_{CC(B)} = 3.0 V to 3.6 V 0.5 2.8 3.1 --ns [3] disable time DIR to A; see Figure 6 t_{dis} $V_{CC(B)} = 0.8 V$ 2.8 ns -----V_{CC(B)} = 1.1 V to 3.6 V -1.5 4.2 4.7 -ns DIR to B; see Figure 6 [3] $V_{CC(B)} = 0.8 V$ -8.7 ---ns $V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$ -1.7 7.3 8.0 ns --V_{CC(B)} = 1.4 V to 1.6 V 2.0 5.2 5.8 --_ ns $V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$ 1.5 5.1 5.7 --ns $V_{CC(B)} = 2.3 \text{ V to } 2.7 \text{ V}$ 0.6 4.2 4.7 --ns $V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$ 1.1 4.8 5.3 --_ ns

Table 8. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7.

74AVCH2T45 1

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	125 °C	Unit
				Min	Тур <u>[1]</u>	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	DIR to A; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	17.4	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	13.0	14.3	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	9.0	10.0	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	8.5	9.5	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	7.2	8.0	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	7.6	8.4	ns
		DIR to B; see Figure 6	<u>[4][5]</u>							
		$V_{CC(B)} = 0.8 V$		-	14.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	11.4	12.7	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	8.9	9.9	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	-	8.1	9.0	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	7.2	8.0	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	6.8	7.6	ns
$V_{CC(A)} =$	3.0 V to 3.6 V									
t _{pd}	propagation delay	A to B; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	11.8	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	7.1	7.9	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.5	4.5	5.0	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.5	3.7	4.1	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.5	2.8	3.1	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	0.5	2.4	2.7	ns
		B to A; see Figure 5	[2]							
		$V_{CC(B)} = 0.8 V$		-	9.5	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.0	6.1	6.8	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.6	3.6	4.0	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	0.5	3.1	3.5	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.5	2.6	2.9	ns
		$V_{CC(B)}$ = 3.0 V to 3.6 V		-	-	-	0.5	2.4	2.7	ns

Table 8. Dynamic characteristics ...continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +′	l 25 °C	Unit
				Min	Тур <u>[1]</u>	Max	Min	Max (85 °C)	Max (125 °C)	
t _{dis}	disable time	DIR to A; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	3.4	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$		-	-	-	1.5	4.7	5.2	ns
		DIR to B; see Figure 6	[3]							
		$V_{CC(B)} = 0.8 V$		-	8.6	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	1.7	7.2	7.9	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	0.7	5.5	6.1	ns
		$V_{CC(B)} = 1.65 \text{ V to } 1.95 \text{ V}$		-	-	-	0.6	5.5	6.1	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	0.7	4.1	4.6	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	1.7	4.7	5.2	ns
t _{en}	enable time	DIR to A; see Figure 6	[4][5]							
		$V_{CC(B)} = 0.8 V$		-	18.1	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	13.3	14.7	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	9.1	10.1	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	-	8.6	9.6	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	6.7	7.5	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	7.1	7.9	ns
		DIR to B; see Figure 6	<u>[4][5]</u>							
		$V_{CC(B)} = 0.8 V$		-	15.2	-	-	-	-	ns
		$V_{CC(B)} = 1.1 \text{ V to } 1.3 \text{ V}$		-	-	-	-	11.8	13.1	ns
		$V_{CC(B)} = 1.4 \text{ V to } 1.6 \text{ V}$		-	-	-	-	9.2	10.2	ns
		$V_{CC(B)}$ = 1.65 V to 1.95 V		-	-	-	-	8.4	9.3	ns
		$V_{CC(B)}$ = 2.3 V to 2.7 V		-	-	-	-	7.5	8.3	ns
		$V_{CC(B)} = 3.0 \text{ V to } 3.6 \text{ V}$		-	-	-	-	7.1	7.9	ns

Table 8. Dynamic characteristics ... continued

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +	125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
Power d	issipation capacita	ince								
C _{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	<u>[6][7]</u>							
		$V_{CC(A)} = V_{CC(B)} = 0.8 V$		-	1	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$		-	2	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.5 V$		-	2	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.8 \text{ V}$		-	2	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 2.5 V$		-	2	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$		-	2	-	-	-	-	pF
		A port: (direction B to A); B port: (direction A to B)	<u>[6][7]</u>							
		$V_{CC(A)} = V_{CC(B)} = 0.8V$		-	9	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$		-	11	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.5 V$		-	11	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 1.8 V$		-	12	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 2.5 V$		-	14	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(B)} = 3.3 V$		-	17	-	-	-	-	pF

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7.

[1] All typical values are measured at nominal $V_{CC(A)}$ and $V_{CC(B)}$.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

- $[3] \quad t_{\text{dis}} \text{ is the same as } t_{\text{PLZ}} \text{ and } t_{\text{PHZ}}.$
- $\label{eq:tensor} [4] \quad t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}.$
- [5] The enable time is a calculated value using the formula shown in <u>Section 13.4 "Enable times"</u>.

[6] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

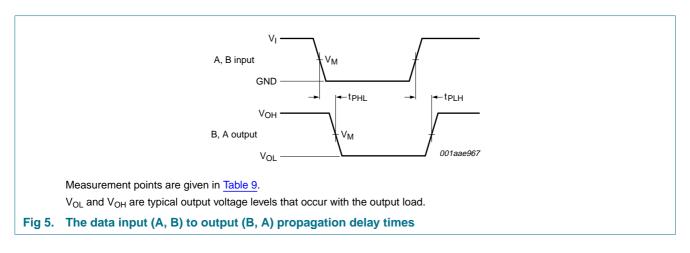
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

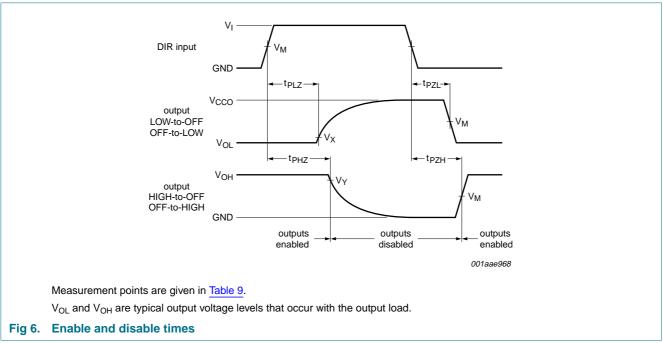
 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;


N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

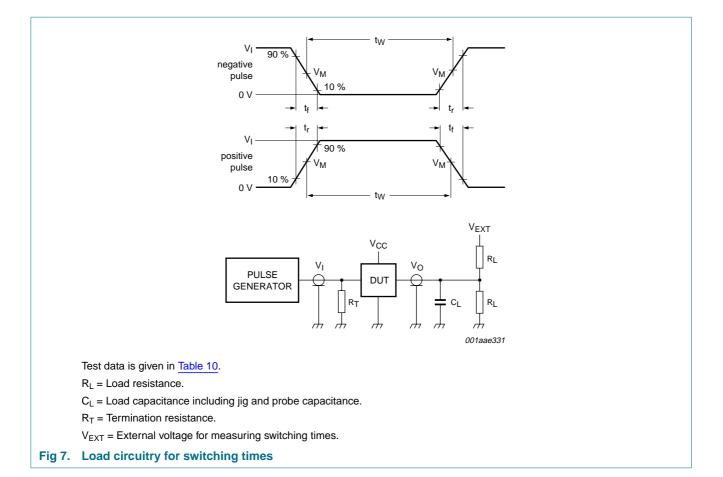
 $\label{eq:field} \mbox{[7]} \quad f_i = 10 \mbox{ MHz}; \mbox{ } V_I = GND \mbox{ to } V_{CC}; \mbox{ } t_r = t_f = 1 \mbox{ ns}; \mbox{ } C_L = 0 \mbox{ pF}; \mbox{ } R_L = \infty \mbox{ } \Omega.$

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

12. Waveforms

Table 9.Measurement points

Supply voltage	Input ^[1]	Output ^[2]	Output ^[2]						
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y					
1.1 V to 1.6 V	$0.5 imes V_{CCI}$	$0.5 imes V_{CCO}$	V _{OL} + 0.1 V	V _{OH} – 0.1 V					
1.65 V to 2.7 V	$0.5 imes V_{CCI}$	$0.5 imes V_{CCO}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V					
3.0 V to 3.6 V	$0.5 imes V_{CCI}$	$0.5 \times V_{CCO}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V					


[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

NXP Semiconductors

74AVCH2T45

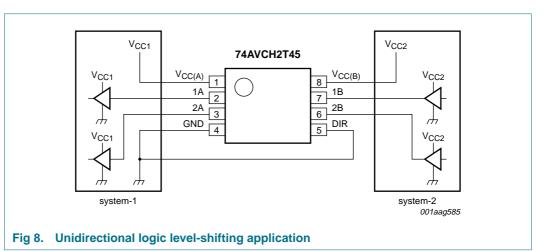
Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 10. Test data

Supply voltage	Input		Load		V _{EXT}	V _{EXT}			
V _{CC(A)} , V _{CC(B)}	V _I [1]	∆ t/ ∆V <mark>[2]</mark>	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]		
1.1 V to 1.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	$2 \times V_{CCO}$		
1.65 V to 2.7 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	$2 \times V_{CCO}$		
3.0 V to 3.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	$2 \times V_{CCO}$		

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] $dV/dt \ge 1.0 V/ns$

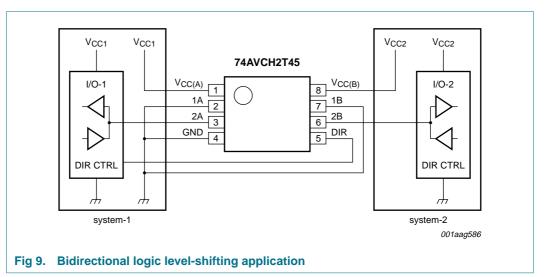

[3] V_{CCO} is the supply voltage associated with the output port.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13. Application information

13.1 Unidirectional logic level-shifting application

The circuit given in Figure 8 is an example of the 74AVCH2T45 being used in an unidirectional logic level-shifting application.


Table 11. Unidirectional logic level-shifting application

		-	• • • •
Pin	Name	Function	Description
1	V _{CC(A)}	V _{CC1}	supply voltage of system-1 (0.8 V to 3.6 V)
2	1A	OUT1	output level depends on V_{CC1} voltage
3	2A	OUT2	output level depends on V_{CC1} voltage
4	GND	GND	device GND
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	2B	IN2	input threshold value depends on V_{CC2} voltage
7	1B	IN1	input threshold value depends on V_{CC2} voltage
8	V _{CC(B)}	V _{CC2}	supply voltage of system-2 (0.8 V to 3.6 V)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13.2 Bidirectional logic level-shifting application

Figure 9 shows the 74AVCH2T45 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable (OE) pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions.

<u>Table 12</u> gives a sequence that will illustrate data transmission from system-1 to system-2 and then from system-2 to system-1.

		•		0 11
State	DIR CTRL	I/O-1	I/O-2	Description
1	Н	output	input	system-1 data to system-2
2	Η	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 still are disabled. The bus-line state depends on bus hold.
4	L	input	output	system-2 data to system-1

Table 12. Bidirectional logic level-shifting application^[1]

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13.3 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

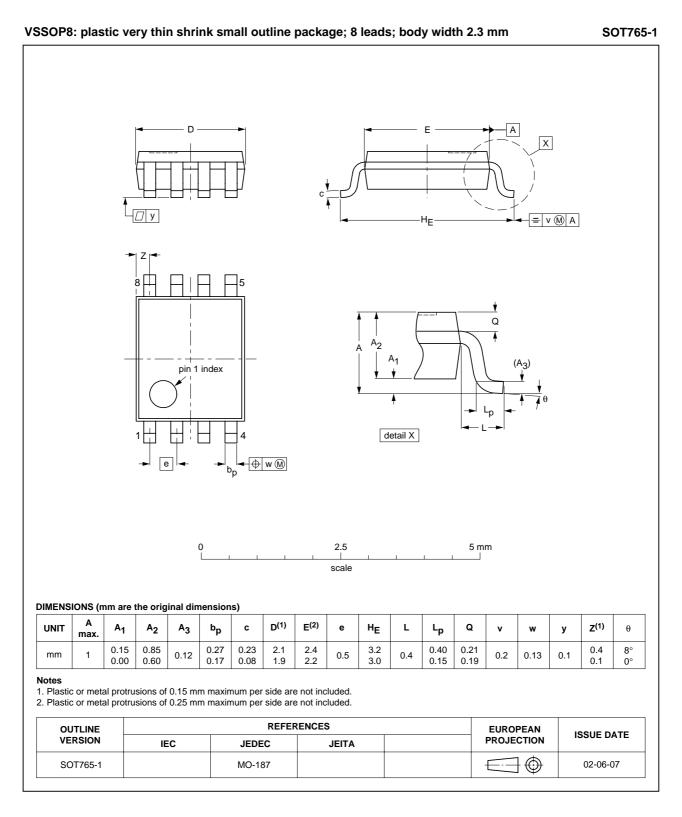
V _{CC(A)}	V _{CC(B)}							
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μA
0.8 V	0.1	0.1	0.1	0.1	0.1	0.7	2.3	μΑ
1.2 V	0.1	0.1	0.1	0.1	0.1	0.3	1.4	μΑ
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.9	μΑ
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.5	μΑ
2.5 V	0.1	0.7	0.3	0.1	0.1	0.1	0.1	μA
3.3 V	0.1	2.3	1.4	0.9	0.5	0.1	0.1	μΑ

Table 13. Typical total supply current (I_{CC(A)} + I_{CC(B)})

13.4 Enable times

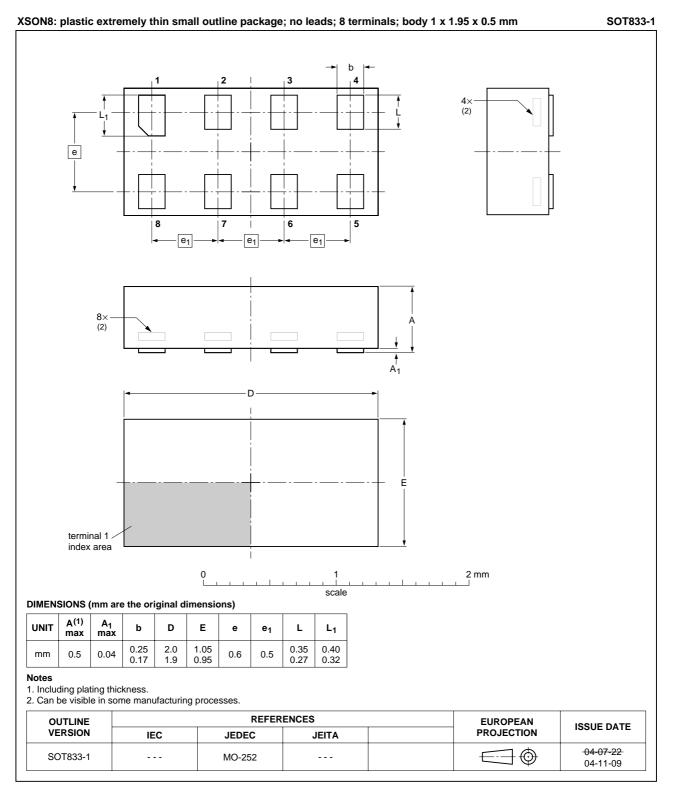
Calculate the enable times for the 74AVCH2T45 using the following formulas:

- t_{en} (DIR to nA) = t_{dis} (DIR to nB) + t_{pd} (nB to nA)
- t_{en} (DIR to nB) = t_{dis} (DIR to nA) + t_{pd} (nA to nB)


In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74AVCH2T45 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

NXP Semiconductors

74AVCH2T45


Dual-bit, dual-supply voltage level translator/transceiver; 3-state

14. Package outline

Fig 10. Package outline SOT765-1 (VSSOP8)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Fig 11. Package outline SOT833-1 (XSON8)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

15. Abbreviations

Table 14. Abbreviations				
Acronym	Description			
CDM	Charged Device Model			
CMOS	Complementary Metal Oxide Semiconductor			
DUT	Device Under Test			
ESD	ElectroStatic Discharge			
HBM	Human Body Model			
MM	Machine Model			

16. Revision history

Table 15. Revision history							
Document ID	Release date	Data sheet status	Change notice	Supersedes			
74AVCH2T45_1	20070703	Product data sheet	-	-			

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

17.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

NXP Semiconductors

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

19. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 10
12	Waveforms
13	Application information 22
13.1	Unidirectional logic level-shifting application. 22
13.2	Bidirectional logic level-shifting application 23
13.3	Power-up considerations 24
13.4	Enable times 24
13.4 14	Enable times
14	Package outline 25
14 15	Package outline25Abbreviations27
14 15 16	Package outline25Abbreviations27Revision history27
14 15 16 17	Package outline25Abbreviations27Revision history27Legal information28
14 15 16 17 17.1	Package outline25Abbreviations27Revision history27Legal information28Data sheet status28
14 15 16 17 17.1 17.2	Package outline25Abbreviations27Revision history27Legal information28Data sheet status28Definitions28
14 15 16 17 17.1 17.2 17.3	Package outline25Abbreviations27Revision history27Legal information28Data sheet status28Definitions28Disclaimers28

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 July 2007 Document identifier: 74AVCH2T45_1

