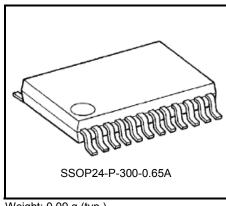
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

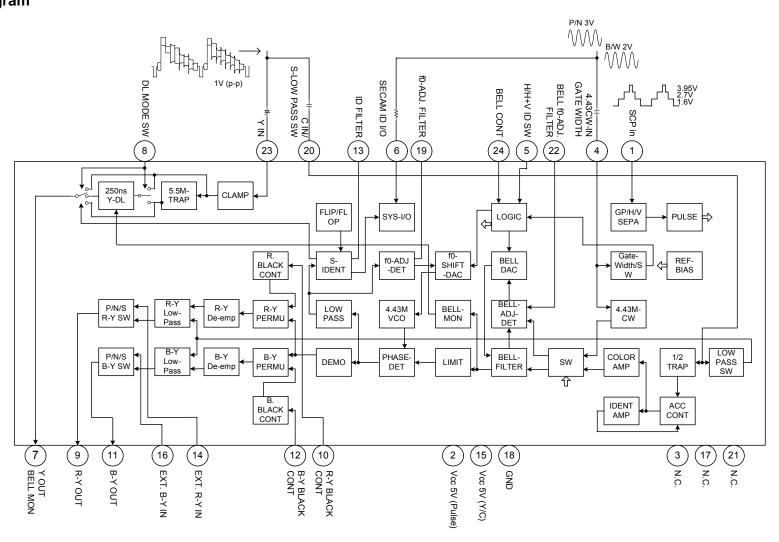

TA1275BFNG

SECAM Demodulator Processor

The TA1275BFNG is a SECAM demodulation IC, used in combination with the TB1309 series to achieve a multicolor system. This IC requires very few external parts.


Features

- Combines with the TB1309 series, which is a video processor, timing controller, and PWM pulse processor for analog LCDs
- Built-in bell filter
- Built-in FM demodulator with PLL circuit for color demodulation and SECAM identification
- DC voltage offset for demodulated signal adjuster
- Input terminals for external R-Y / B-Y signals



Weight: 0.09 g (typ.)

Pin Connection

Block Diagram

Some functional blocks, circuits or constants may be omitted or simplified in the block diagram for explanatory purposes.

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CCmax}	8	V
Input pin voltage	Vin	GND - 0.3 ~ Vcc + 0.3	V
Power consumption	P _D (Note)	780	mW
Power consumption reduction ratio	1 / Qja	6.3	mW / °C
Operating temperature	T _{opr}	-30~85	°C
Storage temperature	T _{stg}	-55~150	°C

Note: When using the device at above TA = 25° C, decrease the power dissipation by 9.1 mW for each increase of 1° C.

The absolute maximum ratings of a semiconductor device are a set of specified parameter values that must not be exceeded during operation, even for an instant.

If any of these ratings are exceeded during operation, the electrical characteristics of the device may be irreparably altered, in which case the reliability and lifetime of the device can no longer be guaranteed.

Moreover, operations with exceeded ratings may cause breakdown, damage and/or degradation in other equipment. Applications using the device should be designed so that no maximum rating will ever be exceeded under any operating conditions.

Before using, creating and/or producing designs, refer to and comply with the precautions and conditions set forth in these documents.

Operating Conditions

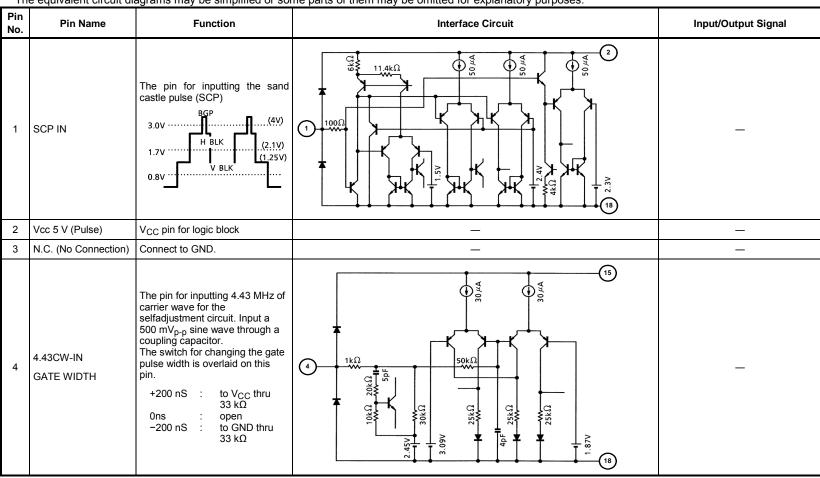
Characteristic	Description	Min	Тур.	Max	Unit
Supply voltage	Pin 2, 15	4.75	5.0	5.25	_
Y Input signal level	White: 100%, including sync.	0.9	1.0	1.1	V (p-p)
Color difference input level	Burst level	270	300	330	mV _(p-p)
	G level	3.25	4.0	5.0	
SCP input level	H level	1.95	2.1	2.6	V
	V level	1.1	1.25	1.4	
4.43 MHz CW input level	Pin 4	200	_	_	mV _(p-p)

Electrical Characteristics

(YC V_{cc} / Pulse V_{cc} = 5 V, Ta = 25°C, unless otherwise specified) Current Consumption

Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
V _{CC} (Y / C)	I _{CC1}	_	32.0	38.5	48.1	mA
V _{CC} (Pulse)	I _{CC2}	_	5.6	6.7	8.4	ША

Terminal Voltage


Pin No.	Pin Name	Symbol	Test Circuit	Min	Тур.	Max	Unit
4	4.43 MHz CW-IN	V ₄	_	2.50	2.75	3.00	
5	ID SW	V ₅	_	2.30	2.50	2.70	
6	SECAM ID I / O (killer OFF)	V ₆	_	0.00	0.20	0.60	
7	YOUT	V ₇	_	2.35	2.55	2.75	
8	MODE SW	V ₈	_	1.80	2.00	2.20	
9	R-Y OUT	V ₉	_	2.10	2.40	2.70	
10	R-Y BLACK CONTROL	V ₁₀	_	2.30	2.50	2.70	
11	B-Y OUT	V ₁₁	_	2.10	2.40	2.70	
12	B-Y BLACK CONTROL	V ₁₂	_	2.30	2.50	2.70	V
13	S-ID FILTER (killer OFF)	V ₁₃	_	4.25	4.55	4.85	
14	EXT. R-Y IN	V ₁₄	_	2.40	2.60	2.80	
16	EXT. B-Y IN	V ₁₆	_	2.40	2.60	2.80	
19	F0-ADJ. FILTER	V ₁₉	_	2.55	3.00	3.45	
20	CIN	V ₂₀	_	3.50	3.70	3.90	
22	BELL ADJ. FILTER	V ₂₂	_	2.20	2.50	2.80	
23	YIN	V ₂₃	_	2.30	2.50	2.70	
24	BELL CONTROL	V ₂₄	_	4.80	5.00	5.20	

Note: The pins numbered 1, 4, 9, 10, 12, 13, 14, 19, 20 and 24 of this product are sensitive to electrostatic discharge. When handling the product, protect the environment to avoid electrostatic discharge.

TOSHIBA

Terminal Interface

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory purposes.

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
5	H/H+V ID SW	The switch pin for selecting the ID detection mode. H+V: connected to VCC Auto search (H, V, H+V): opened H: connected to GND	30kΩ 30kΩ 1.7v 50 μF 50 μF 50 μF 50 μF	_
6	SECAM ID I / O	The interface pin to the main processor (i.e., TB1309). This input/output interface pin sinks two values of current corresponding to the ID level of the SECAM input signal. Strong SECAM : 420 μA SECAM : 180 μA This pin turns the internal/external switch by the input DC voltage. Internal : GND~2.5 V External : 2.5 V~VCC	2.5V 2.5V 1.75V 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V 3.0000 3.000 3.0	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
7	Y OUT BELL MON	The output pin for the Y signal. The standard output level is 1.0 V_{p-p} . The 5.5 MHz trap filter and delay line on the Y signal processing is controlled by the switch on Pin 8. The output signal of the bell filter can be monitored on this pin by switching Pin 20 for testing.	10007 150 #A	
8	DL MODE SW	The pin for controlling the Y processing mode. To V _{CC} : 5.5 MHz trap Open: 5.5 MHz trap + DL To GND: DL	20kΩ \$0 30kΩ \$0 AA 15kΩ \$0 AA 15kΩ \$0 AA 50 AA 5	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
9	R-Y OUT	The output pin for demodulated R-Y signal. Standard output level is 0.7 V _{p-p} with a standard color bar signal. R-Y processor has an LPF to eliminate the carrier components.		_
10	R-Y BLACK CONTROL	The pin for controlling the black offset level. Adjusting range is within ±30 mV. (This pin should be opened in the case of use with the TB1309as the TB1309 has an IIC BUS control for SECAM black alignment.)	20 4A 4kΩ 4kΩ 20 4A 4kΩ 20 4A 4kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3kΩ 3	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
11	B-Y OUT	The output pin for demodulated B-Y signal. The standard output level is 0.56 V _{p-p} . The B-Y processor has an LPF to eliminate the carrier components.	1mA 50000 \$\frac{1}{5}\$	
12	B-Y BLACK CONTROL	The pin for controlling the black offset level. The adjusting range is within ±30 mV. (This pin should be opened in the case of use with the TB1309 as the TB1309 has an IIC BUS control for SECAM black alignment.)	20 µA 4kΩ 4kΩ 4kΩ 2.5v 3kΩ 3kΩ (5)	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
13	ID FILTER	The pin for connecting the SECAM ident filter capacitor. Too large a capacitor causes a time delay obtaining color signal on a picture. Yet a weak RF signal performancegrows worse if the capacitor is too small.	2 kû + 2 kû - 2 sv - 2	
14	EXT. R-Y IN	The input pin for external R-Y signal. The gain of the internal amplifier is 0 dB.	2.45v (s)	
15	Vcc 5 V (Y/C)	The V _{CC} pin for the Y/C processing block.	_	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
16	EXT. B-Y IN	The input pin for the external B-Y signal. The gain of the internal amplifier is 0 dB.	2.45V (\$\text{\$\exititt{\$\text{\$\exititt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\ti	_
17	N.C. (No Connection)	Connect to GND.	_	_
18	GND	The GND pin.	_	_
19	f ₀ -ADJ. FILTER	The pin for connecting a capacitor for the automatic adjustment circuit. Too large a capacitor causes a time delay obtaining a color signal on the picture. Yet picture noise and flickeringoccur if the capacitor is too small.	2kn 2kn 2kn 36kn 36kn	_

Pin No.	Pin Name	Function	Interface Circuit	Input/Output
20	C IN S-LOW PASS SW	The chroma signal input pin. Apply composite signal through 0.01 μ F of coupling capacitor. The standard input signal level is 1 V_{p-p} . The bell monitor switch for testing is overlaid on this pin. When this pin is connected to GND through 27 $k\Omega$, the bell filter output is observed on Pin 7 (Y-OUT).	50 μA 37kΩ 50kΩ 500Ω 3.2ν ψ ψ ψ ψ ψ 500Ω 25 μA 500Ω 2.45ν σ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ	_
21	N.C. (No Connection)	Connect to GND.	_	_
22	BELL f ₀ -ADJ. FILTER	The pin for connecting the filter capacitor for the bell filter f ₀ , 4.286 MHz. Too large a capacitor causes a time delay on the bell filter f ₀ adjustment. Yet too small a capacitor causes the picture to be noisy.	2kû	_

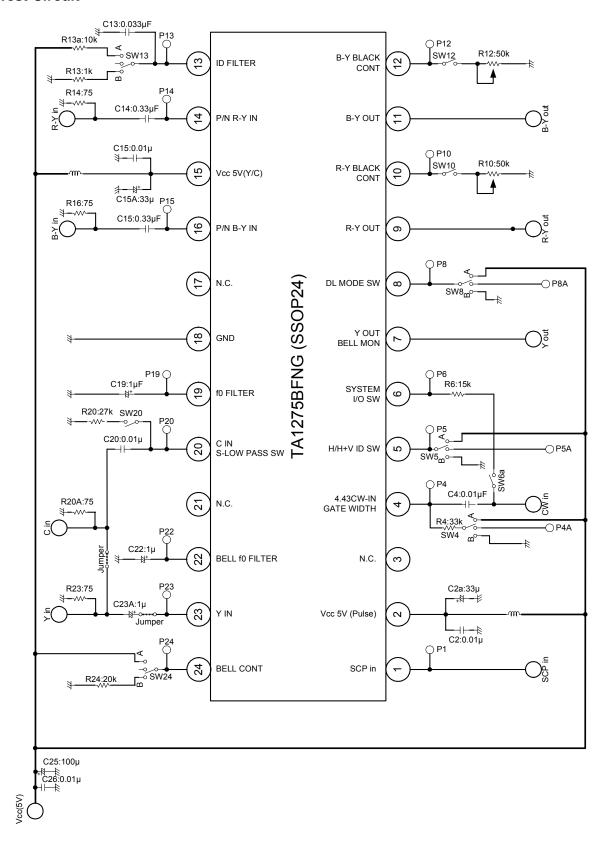
Pin No.	Pin Name	Function	Interface Circuit	Input/Output Signal
23	Y IN	The Y signal input pin. Apply the composite signal into this pin through a coupling capacitor. The standard input level is 1.0 V _{p-p} .	2.6V 100,4A 100,4A \$50,4A \$50,4A \$50,4A \$50,4A \$50,4A \$50,4A \$50,4A \$50,4A	_
24	BELL CONTROL	The pin for selecting the bell filter f_0 $f_0+70 \text{ kHz} : \text{OPEN} \\ (\approx \text{V}_{CC}) \\ f_0+35 \text{ kHz} : 20 \text{ k}\Omega \text{ to} \\ \text{GND} \\ (\approx 1.7 \text{ V}) \\ f_0 \qquad : \text{to GND} \\ (\approx 0 \text{ V})$	24 Φ/205 (C) 435 kHz (10) +70 kHz (18) (18) (18) (18) (18) (18) (18) (18)	_

AC Characteristics (Unless otherwise specified, V_{CC} = 5 V (Pins 2 & 15), Ta = 25°C)

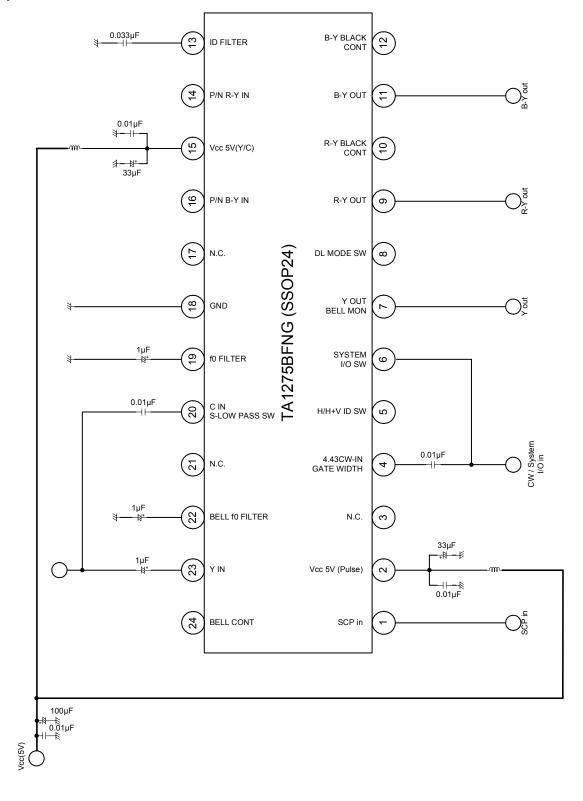
N.	Item	Symbol	Test Circuit	Test Condition	Rating			l lmi4
No.					Min	Тур.	Max	Unit
1	Bell/Filter f ₀	f _{0B-C}	_	(Note 2)	-23	0	30	kHz
2	Bell/Filter f ₀ Variable Range	f _{0B-H} f _{0B-L}	_	(Note 3)	+40 +10	+70 +35	+100 +60	kHz kHz
3	Bell/Filter Q	Q _{BEL}	_	(Note 6)	14	16	18	_
4	Color Difference Output Amplitude	V _{BS} V _{RS}	_	(Note 7)	0.39 0.5	0.56 0.7	0.73 0.99	V (p-p)
5	Color Difference Relative Amplitude	R/B-S	_	(Note 8)	1.24	1.35	1.52	_
6	Linearity	LinB LinR	_	(Note 12)	93 93	100 100	107 107	% %
7	Rising Time	t _{rR} t _{rB}	_	(Note 13)	_	1.3 1.3	2.0 2.0	µs µs
8	Demodulation Hold Range	H _{RL} H _{BH}	_	(Note 14)	— 4.75	3.5 5.2	3.9	MHz MHz
9	Demodulation Capture Range	C _{RL} C _{BH}	_	(Note 15)	_ 4.75	3.5 5.2	3.9 —	MHz MHz
10	Killer Operation Input Level	e _{SK} e _{SC}	_	(Note 16)	0.15 0.40	0.30 0.65	0.60 1.20	mV _(p-p) mV _(p-p)
11	Black Level Offset	E _{rR} E _{rB}	_	(Note 18)	-30 -30	0	+30 +30	mV mV
12	ID Voltage	V _{6color} V _{6B / W}	_	(Note 19)	0.12 4.8	0.2 4.9	0.6 5.0	V V
13	ID Current	I _{6strong} SE I _{6SE} I _{6B / W}	_	(Note 20)	310 133 —	420 180 0	530 225 10	μΑ μΑ μΑ
14	System SW Threshold Level	V _{6P / N} V _{6S}	_	(Note 21)	2.3 2.3	2.5 2.5	2.7 2.7	V
15	Color Difference Output DC Level	V _{9P / N} V _{11P / N} V _{9S} V _{11S}	_	(Note 22)	2.3 2.3 2.1 2.1	2.6 2.6 2.4 2.4	2.9 2.9 2.7 2.7	V V V
16	R-Y / B-Y Color Black Level Control Characteristics	ΔE _{rR+} ΔE _{rR-} ΔE _{rB+} ΔE _{rB-}	_	(Note 23)	22 -30 22 -30	26 -26 26 -26	30 -22 30 -22	mV mV mV
17	Ext. Color Difference Gain	G _{EXTR} G _{EXTB}	_	(Note 24)	0.8 0.8	1.0 1.0	1.2 1.2	_
18	Gate Pulse Width Variable Range	W _{GPGND} W _{GP} W _{GP} VCC	_	(Note 26)	1.7 1.9 2.1	1.8 2.0 2.2	1.9 2.1 2.3	μs μs μs
19	Y DL Characteristics (at 3 MHz)	t _{YDL}	_	(Note 27)	180	250	360	_
20	Y Trap Characteristics	f _{0Y5.5} G _{at} f ₀	_	(Note 28)	4.5 —	5.5 -35	6.5 -20	MHz dB
21	Y Input Dynamic Range	DR _{YS} DR _{YBW}	_	(Note 29)	0.9 1.1	1.0 1.25	1.1 1.4	V (p-p)
22	Y Gain	GYS GYBW	_	(Note 30)	0.7 0.8	0.9 1.0	1.1 1.2	_ _

Test Conditions (Unless otherwise specified, V_{CC} = 5 V (Pins 2 & 15), Ta = 25°C)

Note	Item	Test Condition				
	Bell / Filter f ₀	(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20.				
		(2) : Connect Pin 20 to GND through 27 kΩ.				
1		(3) : Keep Pin 24 GND.				
		(4) : Measure the frequency at which the Pin 7 output is the greatest, that is, "f _{0BEL} ".				
		(5) : Calculate : $"f_{0B-C}" = f_{0BEL}-4,286 \text{ kHz}.$				
	Bell / Filter f ₀ Variable Range	(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20.				
		(2) : Connect pin 20 to GND through 27 kΩ.				
2		(3) : Measure the frequency at which the Pin 7 output is the greatest when V _{CC} is 5.5 V / 4.5 V, that is, f _{0BEL5.5} / f _{0BEL4.5} .				
		(4) : Calculate : " f_{0B-H} " = f_{0BELH} -4,286 kHz. " f_{0B-L} " = f_{0BELL} -4,286 kHz.				
	Bell / Filter Q	(1) : Input a 20 mV _{p-p} sine wave whose frequency is sweep into Pin 20.				
•		(2) : Connect Pin 20 to GND through 27 k Ω .				
3		(3) : Pin 24 is GND.				
		(4) : Observe the frequency response of the Pin 7 output.				
		(5) : Calculate : "Q _{BEL} " = (MAX-3dB Band Width) / f _{0BEL} .				
	Color Difference Output Amplitude	(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20. fo : 4.286MHz				
		(2) : Measure the R-Y output amplitude at Pin 9, that is, "V _{RS} ".				
4		(3) : Measure the B-Y output amplitude at Pin 11, that is, "V _{BS} ".				
5	Color Difference Relative Amplitude	Calculate : "R / B-S" = V_{RS} / V_{BS} .				
	Linearity	(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.				
		(2) : Measure the amplitude between Black and Cyan / Red, that is, V _{Cyan} / V _{Red} .				
6		(3) : Measure the amplitude between Black and Yellow / Blue, that is, V _{Yellow} / V _{Blue} .				
		(4) : Calculate : "LinR" = V _{Cyan} / V _{Red} Yellow "LinB" = V _{Yellow} / V _{Blue}				
	Rising Time	(1) : Input a 75% color bar (200 mV $_{p-p}$ at R ID) $$_{\rm t_{\rm fB}}$, $\rm t_{\rm rR}$$				
7		(2) : Measure the rising time (from 10% to 90%) between Green and Magenta at Pin 9 / Pin 11, that is, "trR" / "trB".				
8	Demodulation Hold Range	(1) : Input a 200 mV $_{p-p}$, 2 MHz sine wave into Pin 20. $_{4.25M}$				
9	Demodulation Capture Range	(2) : Increasing the input frequency, measure the frequencies at which demodulated output appears at Pin 9, that is, "C _{RL} ", and at which demodulated output disappears at Pin 11, that is, "Red Blue "H _{BH} ".				
		(3) : Input a 200 mV _{p-p} , 7 MHz sine wave into Pin 20.				
		(4) : Decreasing the input frequency, measure the frequencies at which demodulated output appears at Pin 11, that is, "C _{BH} ", and at which demodulated output disappears at Pin 9, that is, "H _{RL} ".				

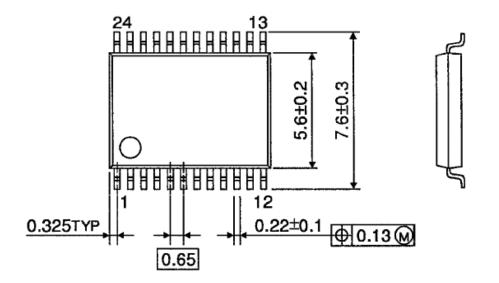

Note	Item	Test Condition		
		(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.		
10	Killer ON/OFF Level	(2) : Decreasing the input amplitude, measure the amplitude at which demodulated outputs disappear at Pin 9 and Pin 11, that is, "e _{SK} ".		
		(3) : Increasing the input amplitude from 0 mV _{p-p} , measure the amplitude at which demodulated outputs appear at Pin 9 and Pin 11, that is, "e _{SC} ".		
	Black Level Offset	(1) : Input a 200 mV _{p-p} non-modulated chrome signal into Pin 20.		
11		(2) : Pin 10 and Pin 12 are opened.		
		(3) : Measure the difference between picture period and blanking period at Pin 9 / Pin 11, that is, "E _{rR} " / "E _{rB} ".		
	ID Voltage	(1) : Connect the external power supply to Pin 13, as shown in the figure.		
		(2) : Apply 4.0 V to Pin 13, and measure the Pin 6 voltage, that is, "V _{6color} ".		
		(3) : Apply 2.0 V to Pin 13, and measure the Pin 6 voltage, that is, "V _{6B / W} ".		
		6		
12		_		
		Voltmeter (V)		
		+		
		THE STATE OF THE S		
	ID Current	(1) : Connect the external power supply to Pin 13, as shown in the figure.		
		(2) : Apply 5.0 V to Pin 13, and measure the Pin 6 current, that is, "l _{6strongSE} ".		
		(3) : Apply 4.0 V to Pin 13, and measure the Pin 6 current, that is, "l _{6SE} ".		
		(4) : Apply 2.0 V to Pin 13, and measure the Pin 6 current, that is, "I _{6B / W} ".		
40		TA1275 BFNG		
13		(4) (6)		
		0.01μF		
		A Ammeter		
		56 TB1309FG		
		1 3 13 13 13 13 13 13 13 13 13 13 13 13		
	System SW Threshold Level	(1) : Input a 200 mV _{p-p} , 15 kHz sine wave into Pin 14 and Pin 16.		
		(2): No input on Pin 20.		
14		(3) : Increasing the Pin 6 voltage from 0 V, measure the voltage at which the 15 kHz sine wave appears at Pin 9 and Pin 11, that is, "V _{6PIN} ".		
		(4) : Decreasing the Pin 6 voltage from 4 V, measure the voltage at which the 15 kHz sine wave disappears at Pin 9 and Pin 11, that is, "V _{6S} ".		
	Color Difference Output DC Level	(1): No input on Pin 20.		
15		(2) : Measure the DC voltage on Pin 9 / Pin 11 when Pin 6 is 4 V, that is, "V _{9PIN} " / "V _{11PIN} ".		
		(3) : Measure the DC voltage on Pin 9 / Pin 11 when Pin 6 is 0 V, that is, "V _{9S} " / "V _{11S} ".		
	R-Y B-Y Black Level Control Characteristics	(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.		
		(2) : Measure the difference between the picture period and the blanking period at Pin 9 when Pin 10 is 5 V / 0 V, that is, E_{rR+} / E_{rR-} .		
4.5		(3) : Measure the difference between the picture period and the blanking period at Pin 11 when Pin 12 is 5 V / 0 V, that is, E _{rB+} / E _{rB-} .		
16		(4) : Calculate : $^{\text{L}}_{\text{CR}+}$ = $^{\text{L}}_{\text{RR}+}$ = $^{\text{L}}_{\text{RR}}$ = $^{\text{L}}_{\text{RR}}$ = $^{\text{L}}_{\text{RR}}$ = $^{\text{L}}_{\text{RR}}$		
		"ΔΕ _{ΓΒ} +" = Ε _{ΓΒ} +-Ε _{ΓΒ} "ΔΕ _{ΓΒ} -" = Ε _{ΓΒ} Ε _{ΓΒ}		
		$^{"}\Delta E_{rR} - ^{"}= E_{rR} - E_{rR}$ $^{"}\Delta E_{rB} + ^{"}= E_{rB} - E_{rB}$ $^{"}\Delta E_{rB} - ^{"}= E_{rB} - E_{rB}$ $^{*}\Delta E_{rB} - ^{"}= E_{rB} - E_{rB}$		
		n _o		

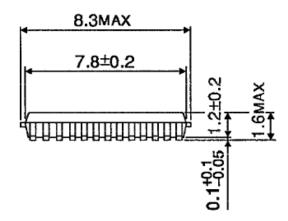
16

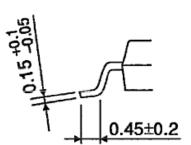


Note	Item	Test Condition		
	Ext. Color Difference Gain	(1) : Input a 200 mV _{p-p} , 15 kHz sine wave into Pin 14 and Pin 16.		
		(2) : Supply 4 V to Pin 6.		
17		(3) : Measure the respective output amplitudes at Pin 9 and Pin 11: V _{EXTR} and V _{EXTB} .		
		(4) : Calculate : "G _{EXTR} " = V _{EXTR} / 200 mV "G _{EXTB} " = V _{EXTB} / 200 mV		
18	Gate Pulse Width Variable Range	(1) : Input a 75% color bar (200 mV _{p-p} at R ID) into Pin 20.		
		(2) : Connecting Pin 13 to GND via 1 kΩ, observe the gate pulse at Pin 13.		
		(3) : Measure the respective gate pulse widths for when Pin 4 is opened and for when it is connected to V _{CC} / GND: "W _{GP} ", "W _{GPVCC} " and "W _{GPGND} ". W _{GPGND} W _{GPGND}		
		(1) : Connect Pin 13 to V _{CC} via 10 kΩ.		
19	Y DL Characteristics	(2) : Connect Pin 8 to GND.		
		(3) : Measure the delay time between Pin 23 input and Pin 7 output, that is, "t _{YDL} ".		
	Y Trap Characteristics	(1) : Input a sweep signal with sync. (1 V _{p-p}).		
		(2) : Connect Pin 13 to V _{CC} via 10 kΩ.		
		(3) : Connect Pin 8 to V _{CC} .		
20		(4) : Observing the frequency response at Pin 7, measure the frequency at which the attenuation is maximum, that is, "f ₀ y _{5.5} "; and measure the attenuation at f ₀ y _{5.5} against that at 1 MHz, that is, "Gy _{5.5} ".		
	Y Input Dynamic Range	(1) : Connect Pin 13 to V _{CC} via 10 kΩ.		
21		(2): Increasing the amplitude of the Y signal input into Pin 23, measure the amplitude at which the output signal from Pin 7 begins to be distorted, that is, "DR _{YS} ".		
		(3) : Open Pin 13.		
		(4) : Repeat (2), that is, "DR _{YBW} ".		
	Y Gain	(1) : Input a Y signal (picture period amplitude: 0.7 V _{p-p}) into Pin 23.		
		(2) : Connect Pin 13 to V _{CC} via 10 kΩ.		
22		(3) : Measure the gain between Pin 23 input and Pin 7 output, that is, "GYS".		
		(4) : Open Pin 13.		
		(5) : Repeat (3), that is, "GYBW".		

Test Circuit


Application Circuit




The application circuits shown in this document are examples provided for reference purposes only. Thorough evaluation is required in the mass production design phase. By furnishing these examples of application circuits, Toshiba does not grant the use of any industrial property rights.

Outline Drawing

SSOP24-P-300-0.65A Unit: mm

Weight: 0.09 g (typ.)

About solderability, following conditions were confirmed

- Solderability
 - (1) Use of Sn-63Pb solder Bath
 - · solder bath temperature = 230°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux
 - (2) Use of Sn-3.0Ag-0.5Cu solder Bath
 - · solder bath temperature = 245°C
 - · dipping time = 5 seconds
 - · the number of times = once
 - · use of R-type flux

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.