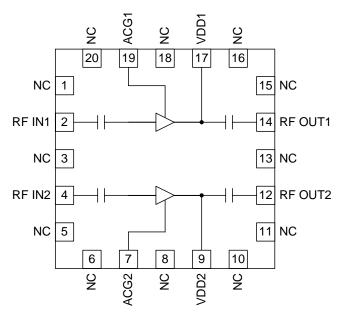
rfmd.com

RF3867

DUAL-CHANNEL, WIDE BANDWIDTH, HIGH LINEARITY LOW NOISE AMPLIFIER

Package Style: QFN, 20-Pin, 5mmx5mm



Features

- Dual-Channel
- Low Noise and High Intercept Point
- Adjustable Bias Current
- Single 2.5V to 6.0V Power Supply
- 700 MHz to 3800 MHz Operation
- Small OFN20 5mmx5mm **Package**

Applications

- CDMA, PCS, DCS, UMTS LNA
- WLAN LNA
- General Purpose Amplification

Functional Block Diagram

Product Description

The RF3867 is a dual-channel version of the RF3863 with a low noise amplifier and a high output IP3. The amplifier is self-biased from a single voltage supply with 50Ω input and output ports. The useful frequency range is from 700MHz to 3800MHz. A 0.8dB noise figure and 36dBm OIP3 performance is achieved with a 5V V_{DD} , 180 mA. Current can be increased to raise OIP3 while having minimal effect on noise figure. The IC is featured in a standard QFN, 20-pin, 5 mm x 5 mm package.

Ordering Information

RF3867 Dual-Channel, Wide Bandwidth, High Linearity Low Noise RF3867PCK-410 Fully Assembled Evaluation Board with 5 Sample Parts 1.5 GHz to 2.7 GHz RF3867PCK-411 3.3GHz to 3.8GHz RF3867PCK-412 700MHz to 1100MHz **Optimum Technology Matching® Applied ▼** GaAs pHEMT ☐ GaAs HBT ☐ SiGe BiCMOS ☐ GaN HEMT Si CMOS GaAs MESFET Si BiCMOS ☐ Si BJT ☐ InGaP HBT ☐ SiGe HBT

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners, ©2006, RF Micro Devices, Inc.

RF3867

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	0 to +7.0	V_{DC}
Input RF Level	+10	dBm
Current Drain, I _{DD}	150 per Channel	mA
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Note 1: Max continous RF IN is +10 dBm. The max transient RF IN is +20 dBm.

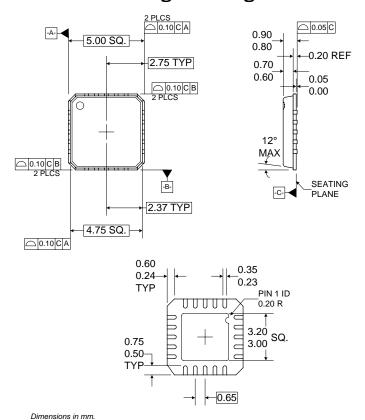
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

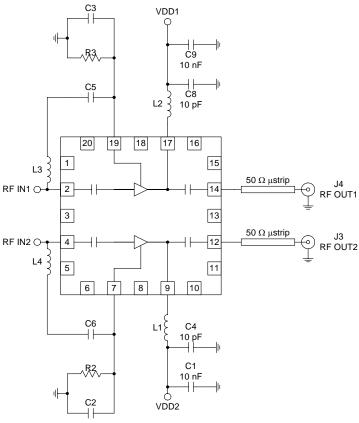
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Davamatav		Specification		11:4	O andition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
High Band		_		_		
Frequency	3.3		3.8	GHz		
Current		180		mA	V _{DD} =5V	
Gain		10		dB	Temp=+25°C, V _{DD} =5V, I _{DD} =180 mA, 3500 MHz unless specified	
Noise Figure		0.8		dB		
OIP3		36		dBm	f ₁ =3500MHz, f ₂ =3501MHz	
OP1dB		21		dBm		
S11		-10		dB		
S22		-12		dB		
Mid Band						
Frequency	1500		2700	MHz		
Current		180		mA	V _{DD} =5V	
Gain	13.5	15.0	16.5	dB	+25°C, V _{DD} =5V, I _{DD} =180mA, 2000MHz unless specified	
Noise Figure		0.8	1.1	dB		
OIP3	33.0	35.5		dBm	f ₁ =2000 MHz, f ₂ =2001 MHz	
OP1dB	21.0	22.5	25.0	dBm		
S11		-10		dB		
S22		-14		dB		
Low Band						
Frequency	700		1100	MHz		
Current		180		mA	V _{DD} =5V	
Gain		18.5		dB	+25°C, V _{DD} =5V, I _{DD} =180mA, 850MHz unless specified	
Noise Figure		1		dB		
OIP3		35		dBm	f ₁ =850MHz, f ₂ =851MHz	
OP1dB		22		dBm		
S11		-10		dB		
S22		-10		dB		



rfmd.com

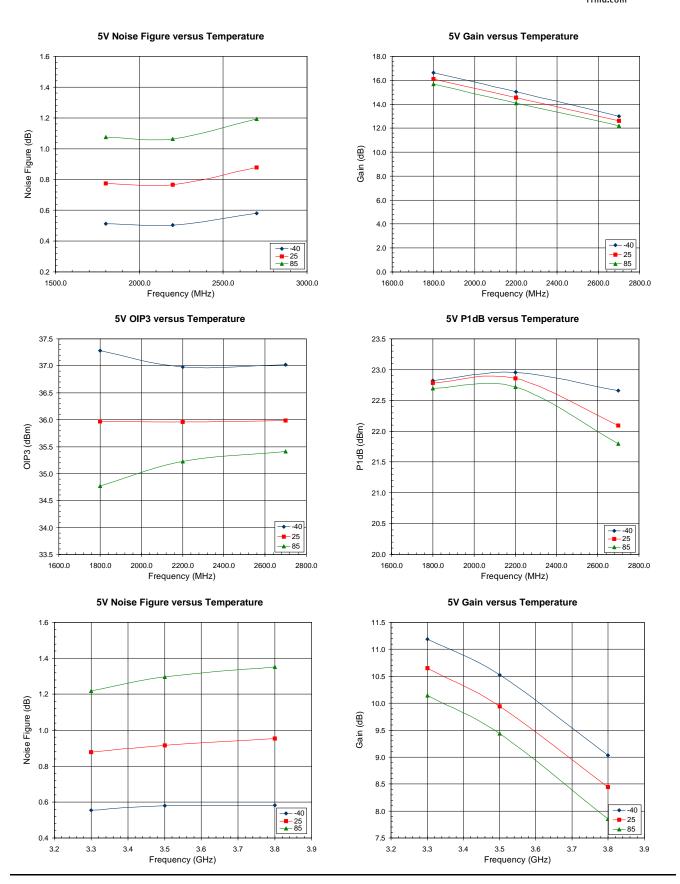
Pin	Function	Description	Interface Schematic
1	NC	Not connected.	
2	RF IN1	Channel 1 RF input pin. 50Ω matched. This pin is DC-blocked.	
3	NC	Not connected.	
4	RF IN2	Channel 2 RF input pin. 50Ω matched. This pin is DC-blocked.	
5	NC	Not connected.	
6	NC	Not connected.	
7	ACG2	Channel 2 AC ground. Shunt cap may be added for tuning. Shunt resistor may be added to increase I_{DD} .	
8	NC	Not connected.	
9	VDD2	Channel 2 bias voltage. 2.5V to 6.0V applied through bias inductor.	
10	NC	Not connected.	
11	NC	Not connected.	
12	RF OUT2	Channel 2 RF output pin. 50Ω matched. This pin is DC-blocked.	
13	NC	Not connected.	
14	RF OUT1	Channel 1 RF output pin. 50Ω matched. This pin is DC-blocked.	
15	NC	Not connected.	
16	NC	Not connected.	
17	VDD1	Channel 1 bias voltage. 2.5V to 6.0V applied through bias inductor.	
18	NC	Not connected.	
19	ACG1	Channel 1 AC ground. Shunt cap may be added for tuning. Shunt resistor may be added to increase I_{DD} .	
20	NC	Not connected.	
Pkg Base	GND	Ground connection.	



Package Drawing

Evaluation Board Schematic 700 MHz to 1100 MHz, 1500 MHz to 2700 MHz, and 3300 MHz to 3800 MHz

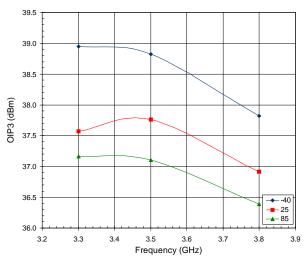
Component	High Band 3300 MHz to 3800 MHz	Mid Band 1500 MHz to 2700 MHz	Low Band 700 MHz to 1100 MHz
L1, L2 (nH)	1.5	12	56
L4, L3 (nH)	100 pF	100 pF	22
C5, C6 (pF)	12 nH	4.7 nH	100
C2, C3 (pF)	DNP	12	6.8
R2, R3 (Ω)	DNP	DNP	DNP
R1 (Ω)	0	0	0
			See note 1

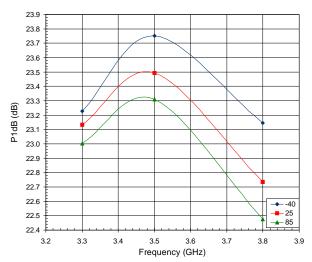

R2 and R3 are DNP for typical 90 mA per channel current draw. If R2 or R3 is added, the channel l_{DD} will increase. A 10 Ω R2 or R3 will raise the current of a channel to achieve higher linearity.

Note 1: For low band add a series 6.8 nH inductor on RF IN, and a shunt 15 nH inductor on RF OUT. Inductors should be placed as close as possible to the part.

Note 2: The topology of L3, L4, C5, and C6 in the mid and high bands. They must be as shown in the chart.

RF3867





5V P1dB versus Temperature

RF3867

