RS1509

150KHz, 2A PWM Buck DC/DC Converter

Description

The RS1509 is Monolithic IC that design for a step-down DC/DC Converter, and own the ability of driving a 2 A load without additional transistor component. The output version included $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and an adjustable type. It operates at a switching frequency of 150 KHz thus allowing smaller sized filter components than what would be needed with lower frequency switching regulators. Other features include a guaranteed $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. Regarding protected function, thermal shutdown is to prevent over temperature operating from damage, and current limit is against over current operating of the output switch.

8-Lead Plastic DIP-8 Package Code: P

8-Lead Plastic SOP-8 Package Code: S

Features

- $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$ and adjustable
- Adjustable version output voltage range: 1.4-37V
$- \pm 4 \%$ max over line and load conditions
- $150 \mathrm{KHz} \pm 15 \%$ fixed switching frequency
- TTL shutdown capability
- Operating voltage can be up to 40 V
- Output load current: 2A
- SOP-8 and DIP-8 packages
- Low power standby mode
- Thermal-shuntdown and current-limit protection
- High efficiency
- Built-in switching a transistor on chip, requires only 4 external components

Applications

- Simple High-efficiency step-down regulator
- Positive to negative converter
- On-card switching regulators

Pin Connections

	Pin1: Operating Voltage Input	Pin5: Ground
	Pin2: Switch Output	Pin6: Ground
	Pin3: Output Voltage Feedback Control	Pin7: Ground
	Pin4: ON/OFF Shutdown	Pin8: Ground

Pin Connections

Absolute Maxium Rating ${ }^{\text {(Note1) }}$

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	40	V
On/Off Pin Input Voltage	V_{SD}	$-0.3 \sim+25$	V
Feedback Pin Voltage	V_{FB}	$-0.3 \sim+25$	V
Output Voltage to Ground	$\mathrm{V}_{\mathrm{OUT}}$	-1	V
Power Dissipation	P_{D}	Internally Limited	W
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$
Operating Voltage	V_{OP}	$+4.5 \sim+40$	V

Electrical Characteristics (Continued)

Specifications with boldface type apply over for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}^{\text {(Note 2) }}$

Part No.	Parameter	Symbol	Conditions	Min.	Typ. (Note3)	Max. (Note4)	Unit
RS1509-3.3	Output Voltage	Vout	$4.75 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{l}_{\text {LOAD }} \leq 2 \mathrm{~A}$	$\begin{aligned} & 3.168 \\ & 3.135 \end{aligned}$	3.3	$\begin{aligned} & 3.342 \\ & 3.465 \end{aligned}$	V
	Efficiency	η	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	-	73	-	\%
RS1509-5.0	Output Voltage	$V_{\text {Out }}$	$7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A}$	$\begin{aligned} & 4.800 \\ & 4.750 \end{aligned}$	5.0	$\begin{aligned} & 5.200 \\ & 5.250 \end{aligned}$	V
	Efficiency	η	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	-	80	-	\%
RS1509-12	Output Voltage	$V_{\text {Out }}$	$15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 2 \mathrm{~A}$	$\begin{aligned} & 11.52 \\ & 11.40 \end{aligned}$	12.0	$\begin{aligned} & 12.48 \\ & \mathbf{1 2 . 6 0} \end{aligned}$	V
	Efficiency	η	$\mathrm{V}_{\text {IN }}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	-	90	-	\%
RS1509-ADJ	Reference Voltage	$V_{\text {FB }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, 0.2 \mathrm{~A} \leq \mathrm{l}_{\mathrm{LOAD}} \leq 2 \mathrm{~A}$ $V_{\text {Out }}$ programmed for 3 V	1.193	1.23	$\begin{aligned} & 1.267 \\ & 1.280 \end{aligned}$	V
	Efficiency	η	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=2 \mathrm{~A}$	-	77	-	\%

All Output Voltage Versions Electrical Characteristics

Specifications with boldface type apply over for full operating temperature range, the other type are for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
(Unless otherwise specified, $\mathrm{V}_{\mathbb{N}}=12 \mathrm{~V}$ for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and adjustable version and $\mathrm{V}_{\mathbb{I N}}=18 \mathrm{~V}$ for the 12 V version, $\mathrm{I}_{\mathrm{LOAD}}=500 \mathrm{~mA}$)

Parameter	Symbol	Test Condition		Min.	Typ.	Max.	Unit
Device Parameters							
Feedback Bias Current	l_{b}	Adjustable Version Only, $\mathrm{V}_{\mathrm{FB}}=1.3 \mathrm{~V}$		-	-10	$\begin{gathered} \hline-50 \\ -100 \end{gathered}$	nA
Oscillator Frequency	f_{0}	(Note 5)		$\begin{aligned} & 120 \\ & 110 \end{aligned}$	150	$\begin{aligned} & 173 \\ & 173 \end{aligned}$	KHz
Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$\mathrm{I}_{\text {Out }}=2 \mathrm{~A}^{\text {(Note 6,7) }}$		-	1.3	$\begin{aligned} & 1.4 \\ & 1.5 \end{aligned}$	V
Max. Duty Cycle (ON) Min. Duty Cycle (OFF)	DC	(Note 7)(Note 8)		-	$\begin{gathered} 100 \\ 0 \end{gathered}$	-	\%
Current Limit	ICL	Peak Current ${ }^{\text {(Note 6,7) }}$		2.1	2.5	-	A
Output Leakage Current	IL	Output=0V ${ }^{\text {(Note 6,8) }}$		-	-	-50	uA
Quiescent Current	l_{Q}	(Note 8)		-	5	10	mA
Standby Quiescent Current	$\mathrm{I}_{\text {StBy }}$	ON/OFF pin=5V ${ }^{\text {(Note 9) }}$		-	150	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	uA
Thermal Resistance	$\theta_{\text {jc }}$	DIP-8	Junction to Case	-	14	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOP-8		-	15	-	
	$\theta_{\text {JA }}{ }^{\text {(Note 10) }}$	DIP-8	Junction to ambient	-	80	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		SOP-8		-	70	-	
ON/OFF Control							
ON/OFF Pin Logic Input Threshold Voltage	$\mathrm{V}_{1 \mathrm{H}}$	Low (Regulator ON)		-	1.3	0.6	V
	$\mathrm{V}_{\text {IL }}$	High (Regulator OFF)		2.0		-	
ON/OFF Pin Input Current	I_{H}	$\mathrm{V}_{\text {LOGIC }}=2.5 \mathrm{~V}$ (Regulator OFF)		-	-5	-15	uA
	IIL	$\mathrm{V}_{\text {LOGIC }}=0.5 \mathrm{~V}$ (Regulator ON)		-	-0.02	-5	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics.
Note 2: External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance.
Note 3: Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
Note 4: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
Note 5: The switching frequency is reduced when the second stage current limit is activated.
Note 6: No diode, inductor or capacitor connected to output pin.
Note 7: Feedback pin removed from output and connected to 0 V to force the output transistor switch ON.
Note 8: Feedback pin removed from output and connected to 12 V for the $3.3 \mathrm{~V}, 5 \mathrm{~V}$, ADJ. version, and 15 V for the 12 V version, to force the output transistor switch OFF.
Note 9: $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$.
Note 10: Junction to ambient thermal resistance. (With copper area of approximately $3 \mathrm{in}^{2}$)

Characteristics Curve

Typical Application Circuit

Fig. 1 Fixed Type Circuit

Fig. 2 Adjustable Output Voltage Versions

DIP-8 Dimension

SOP-8 Dimension

8-Lead SO-8 Plastic
Surface Mounted Package
Package Code: S

DIM	Min.	Max.
A	4.85	5.10
B	3.85	3.95
C	5.80	6.20
D	1.22	1.32
E	0.37	0.47
F	3.74	3.88
G	1.45	1.65
H	4.80	5.10
I	0.05	0.20
J	0.30	0.70
K	0.19	0.25
L	0.37	0.52
M	0.23	0.28
N	0.08	0.13
O	0.00	0.15

*: Typical, Unit: mm

Ordering Information

Part Number	Package	Part Number	Package
RS1509S-ADJ	SOP-8	RS1509P-ADJ	DIP-8
RS1509S -3.3	SOP-8	RS1509P -3.3	DIP-8
RS1509S -5.0	SOP-8	RS1509P -5.0	DIP-8
RS1509S -12	SOP-8	RS1509P -12	DIP-8

Soldering Methods for Orister's Products

1. Storage environment: Temperature $=10^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ Humidity $=65 \% \pm 15 \%$
2. Reflow soldering of surface-mount devices

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (T_{L} to T_{P})	$<3^{\circ} \mathrm{C} / \mathrm{sec}$	$<3^{\circ} \mathrm{C} /$ sec
Preheat - Temperature Min ($\mathrm{Ts}_{\text {min }}$) - Temperature Max ($\mathrm{Ts}_{\text {max }}$) - Time (min to max) (ts)	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60 \sim 120 \mathrm{sec} \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60 \sim 180 \mathrm{sec} \end{gathered}$
Tsmax to T_{L} - Ramp-up Rate	$<3^{\circ} \mathrm{C} /$ sec	$<3^{\circ} \mathrm{C} /$ sec
Time maintained above: - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60 \sim 150 \mathrm{sec} \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60 \sim 150 \mathrm{sec} \end{gathered}$
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (t_{p})	10~30 sec	20~40 sec
Ramp-down Rate	$<6^{\circ} \mathrm{C} / \mathrm{sec}$	$<6^{\circ} \mathrm{C} / \mathrm{sec}$
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	<6 minutes	<8 minutes

3. Flow (wave) soldering (solder dipping)

Products	Peak temperature	Dipping time
Pb devices.	$245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$5 \mathrm{sec} \pm 1 \mathrm{sec}$
Pb-Free devices.	$260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$	$5 \mathrm{sec} \pm 1 \mathrm{sec}$

Important Notice:

- All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of Orister Corporation.
- Orister Corporation reserves the right to make changes to its products without notice.
- Orister Corporation products are not warranted to be suitable for use in Life-Support Applications, or systems.
- Orister Corporation assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

