SKiiP 03AC066V1

MiniSKiiP[®] 1

3-phase bridge inverter

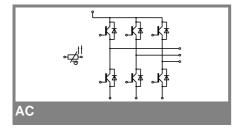
SKiiP 03AC066V1

Target Data

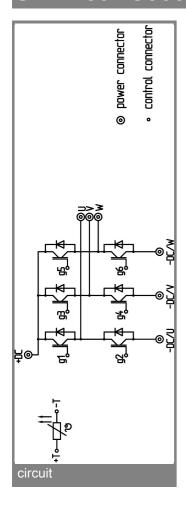
Features

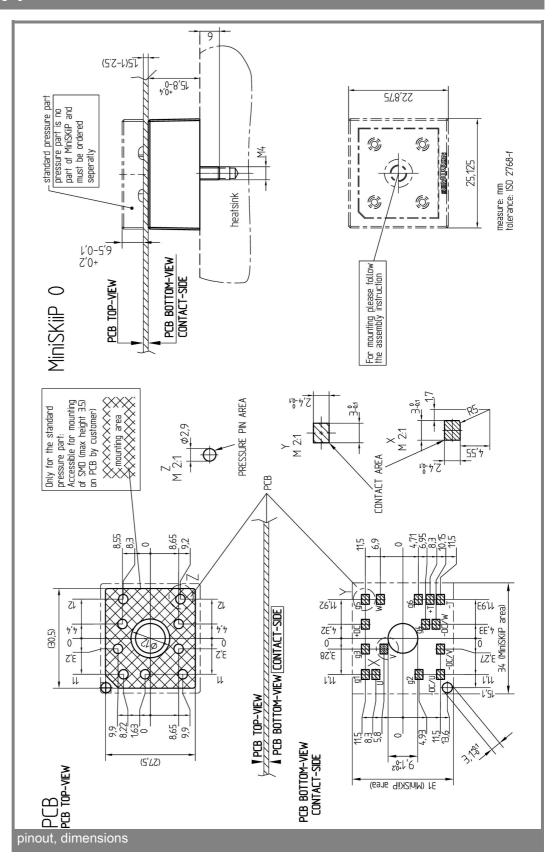
- · Trench IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 6,3 kVA
- Typical motor power 4,0 kW

Remarks


 Case temperature limited to T_C = 125 °C max.


Absolute Maximum Ratings		T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT - Inverter					
V _{CES}	T _s = 25 (70) °C	600	V A		
I _{CRM}	$T_s = 25 (70) ^{\circ}\text{C}, t_p \le 1 \text{ms}$		Α		
V_{GES}	·	± 20	V		
T _j		- 40 + 175	°C		
Diode - Inverter					
I _F	T _s = 25 (70) °C		Α		
I _{FRM}	$T_s = 25 (70) ^{\circ}\text{C}, t_p \le 1 \text{ms}$		Α		
T_j		- 40 + 175	°C		
I _{tRMS}	per power terminal (20 A / spring)	40	Α		
T _{stg}	$T_{op} \le T_{stg}$	- 40 + 125	°C		
V _{isol}	AC, 1 min.	2500	V		

Characteristics T _s = 25 °C, unless otherwise specified						
Symbol	Conditions	min. typ.	max.	Units		
IGBT - Inverter						
V _{CEsat}	I _C = 15 A, T _i = 25 (125) °C	1,45 (1,7)	1,9 (2,1)	V		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$	5,8		V		
V _{CE(TO)}	T _j = 25 (150) °C	0,9 (0,85)	,	V		
r _T	$T_{j} = 25 (150) ^{\circ}C$	37 (57)	60 (80)	mΩ		
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	-		nF		
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	-		nF		
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	-		nF		
$R_{th(j-s)}$	per IGBT	1,78		K/W		
t _{d(on)}	under following conditions	-		ns		
t _r `´	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$	-		ns		
t _{d(off)}	I _C = 15 A, T _i = 125 °C	-		ns		
t _f	$R_{Gon} = R_{Goff} = 30 \Omega$	-		ns		
Ė _{on}	inductive load	0,4		mJ		
E _{off}		0,7		mJ		
Diode - Inverter						
$V_F = V_{EC}$	I _F = 15 A, T _i = 25 (125) °C	1,4 (1,4)	1,6	V		
V _(TO)	T _i = 25 (150) °C	1,03 (0,85)		V		
r _T	T _i = 25 (150) °C	25 (37)		mΩ		
$R_{th(j-s)}$	per diode	2,45		K/W		
I _{RRM}	under following conditions	-		Α		
Q _{rr}	I _F = 15 A, V _R = 300 V	-		μC		
E _{rr}	V _{GE} = 0 V, T _i = 125 °C			mJ		
	di _F /dt = 1350 A/μs					
Temperature Sensor						
R _{ts}	3 %, T _r = 25 (100) °C	1000(1670)		Ω		
Mechanical Data						
m		35		g		
M_s	Mounting torque	2	2,5	Nm		

SKiiP 03AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.