SKiiP 1602GB061-459CTV ...

Power section

Features

intelligent Power System

SKiiP 1602GB061-459CTV

SKiiP technology inside

Integrated current sensor

Integrated heat sink

Integrated temperature sensor

IEC 60721-3-3 (humidity) class

3K3/IE32 (SKiiP[®] 2 System)

(SKiiP[®] 2 power section)

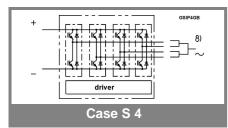
per terminal (SEMIKRON type is

8) AC connection busbars must be

recommended)

available on request

IEC 68T.1 (climate) 40/125/56


1) with assembly of suitable MKP capacitor

connected by the user; copper busbars

Low loss IGBTs CAL diode technology

	Absolut	e Maximum Ratings	T_s = 25 °C unless otherwise specified				
	Symbol	Conditions	Values	Units			
	IGBT	IGBT					
	V _{CES}		600	V			
	V _{CES} V _{CC} ¹⁾	Operating DC link voltage	400	V			
	V _{GES}		± 20	V			
	Ι _C	T _s = 25 (70) °C	1600 (1200)	А			
	Inverse	Inverse diode					
	I _F = - I _C	T _s = 25 (70) °C	1600 (1200)	Α			
SKiiP [®] 2	I _{FSM}	T _i = 150 °C, t _p = 10 ms; sin.	16000	Α			
SKIIP [®] 2	I²t (Diode)	Diode, $T_j = 150 \text{ °C}$, 10 ms	1280	kA²s			
	T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C			
2-pack - integrated	V _{isol}	AC, 1 min. (mainterminals to heat sink)	2500	V			

T_s = 25 °C unless otherwise specified Characteristics Symbol |Conditions min. max. Units typ. IGBT V_{CEsat} I_C = 1600 A, T_i = 25 (125) °C 2,3 (2,6) 2,6 V $V_{\rm CEO}$ $T_i = 25 (125) \circ C$ 0,8 (0,7) 1 (0,9) V T_i = 25 (125) °C 0,9 (1,2) 1 (1,3) mΩ r_{CE} $V_{GE} = 0 V, V_{CE} = V_{CES},$ (80) 1,6 mΑ I_{CES} T_i = 25 (125) °C Eon + Eoff $I_{\rm C}$ = 1600 A, $V_{\rm CC}$ = 300 V 144 mJ T_i = 125 °C, V_{CC} = 400 V 211 mJ R_{CC' + EE'} terminal chip, T_i = 125 °C 0,13 mΩ top, bottom 3,8 nH L_{CE} C_{CHC} per phase, AC-side 3.2 nF **Inverse diode** I_F = 1600 A, T_i = 25 (125) °C $V_F = V_{EC}$ 1,5 (1,5) 1,8 ٧ T_i = 25 (125) °C 0,8 (0,6) 1 (0,8) V V_{TO} T_i = 25 (125) °C 0,4 (0,5) 0,5 (0,6) mΩ r_T $I_{\rm C}$ = 1600 A, $V_{\rm CC}$ = 300 V Err 51 mJ $T_i = 125 \text{ °C}, V_{CC} = 400 \text{ V}$ 61 mJ Mechanical data M_{dc} DC terminals, SI Units 6 8 Nm M_{ac} AC terminals, SI Units 13 15 Nm SKiiP® 2 System w/o heat sink 3,5 w kg 8,5 w heat sink kg Thermal characteristics (P 16 heat sink; 275 m³/h); ", "reference to temperature sensor per IGBT 0,028 K/W R_{th(j-s)I} per diode 0,05 K/W R_{th(j-s)D} per module 0.033 K/W R_{th(s-a)} Z_{th} R_i (mK/W) (max. values) tau_i(s) 2 1 2 3 4 1 3 4 3 21 3 1 0,13 0,001 Z_{th(j-r)I} Z_{th(j-r)D} 6 39 6 0,13 0,001 1 1,6 22 7 2,4 494 165 20 0.03 Z_{th(r-a)}

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1602GB061-459CTV ...

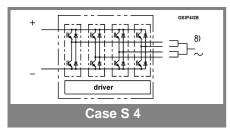
	Absolute Maxin	
	Symbol	Condi
	V _{S1} V _{S2}	stabilize unstabil
	V _{iH}	input sig
	dv/dt	seconda
	V _{isollO}	input / o
	V _{isol12}	output 1
	f _{max}	switchin
SKiiP [®] 2	$T_{op} (T_{stg})$	operatin

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1602GB061-459CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)Power supply protected against
- under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Symbol	Conditions	Values	Units
V _{S1}	stabilized 15 V power supply	18	V
V _{S2}	unstabilized 24 V power supply	30	V
V _{iH}	input signal voltage (high)	15 + 0,3	V
dv/dt	secondary to primary side	75	kV/μs
V _{isollO}	input / output (AC, r.m.s., 2s)	2500	Vac
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac
f _{max}	switching frequency	15	kHz
T _{op} (T _{stg})	operating / storage temperature	- 25 + 85	°C

Characteristics (T _a =					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V _{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+470	290+470*f/f _{max} +1,3*(I _{AC} /A)		mA
I _{S2}	V _{S2} = 24 V	220+320	220+320*f/f _{max} +1,0*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)	11,2			V
V _{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,4		μs
t _{pERRRESET}	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		1322		A
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
ITRIPSC	over current trip level (I _{analog OUT} = 10 V)		1652		Α
I _{TRIPLG}	ground fault protection				А
T _{tp}	over temperature protection	110		120	°C
UDCTRIP	trip level of U _{DC} -protection	400			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

