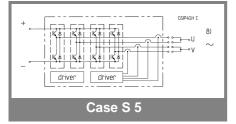

SKiiP 432GH120-2*207CTV ...

4-pack - integrated

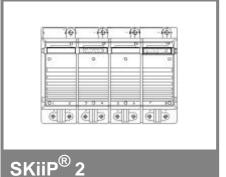
intelligent Power System

Power section


SKiiP 432GH120-2*207CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP® 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		T _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	400 (300)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	400 (300)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	2880	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	41	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25$ °C unless otherwise specified								
	Conditions				min.	typ.	max.	Units
IGBT						71		
V _{CEsat}	I _C = 350 A, 7	Γ _i = 25 (1	25) °C			2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (125)$) [°] C				1,2 (1,3)	1,5 (1,6)	V
r _{CE}	$T_j = 25 (125)$) °C				3,8 (5)	4,5 (5,8)	mΩ
I _{CES}	V _{GE} = 0 V, V		ES,			(20)	0,8	mA
	$T_i = 25 (125)$							
E _{on} + E _{off}	I _C = 350 A, \		0 V				105	mJ
011 011	T _i = 125 °C,						185	mJ
R _{CC' + EE'}	terminal chip					0,25		mΩ
L _{CE}	top, bottom	J				7,5		nH
C _{CHC}	per phase, A	AC-side				2,8		nF
Inverse o	diode				I.			I
	I _F = 300 A, T	T _i = 25 (1	25) °C		1	2,1 (1,9)	2,6	V
V _{TO}	$T_i = 25 (125)$						1,4 (1,1)	V
r _T	$T_i = 25 (125)$) °C				2,5 (3)	3,4 (3,9)	mΩ
E _{rr}	I _C = 350 A, \	$I_{CC} = 60$	0 V				12	mJ
	$T_j = 125 ^{\circ}\text{C},$	V _{CC} = 90	00 V				15	mJ
Mechani	cal data							
M_{dc}	DC terminals	s, SI Uni	ts		6		8	Nm
M _{ac}	AC terminals	s, SI Unit	S		13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
w	heat sink					8,5		kg
Thermal	characteri	istics (P16 hea	t sink; 2	75m ³ /h);	"_ " refer	ence to	
	ture senso				•	r		
$R_{th(j-s)l}$	per IGBT						0,064	K/W
R _{th(j-s)D}	per diode						0,188	K/W
$R_{th(s-a)}$	per module						0,033	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	7	50	8		1	0,13	0,001	
$Z_{th(j-r)D}$	21	144	23		1	0,13	0,001	
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 432GH120-2*207CTV ...

4-pack - integrated intelligent Power System

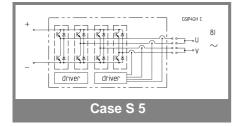
4-pack integrated gate driver

SKiiP 432GH120-2*207CTV

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- · Short circuit protection
- Over current protection

under voltage


- Over voltage protection (option)
- Power supply protected against
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characteristics			(T _a	(T _a = 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+32	210+320*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+220*f/f _{max} +1,0*(I _{AC} /A)			mA
V_{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		400		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		500		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

