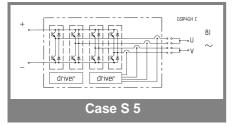

SKiiP 432GH120-4D

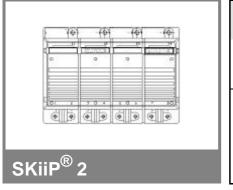
4-pack - integrated intelligent Power System

Power section


SKiiP 432GH120-4D

Power section features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units		
IGBT					
V_{CES}		1200	V		
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V		
V_{GES}		± 20	V		
I _C	T _s = 25 (70) °C	400 (300)	Α		
Inverse diode					
I _F = - I _C	T _s = 25 (70) °C	400 (300)	Α		
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	2880	Α		
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	41	kA²s		
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C		
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V		

Characteristics $T_s = 25$ °C unless otherwise specified							specified	
Symbol Conditions				min.	typ.	max.	Units	
IGBT	Johnand	7110				, y p	maxi	Omico
V _{CEsat}	I _C = 350 A,	T. = 25 (1	25) °C		I	2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (12)$		20, 0			,	1,5 (1,6)	V
r _{CE}	$T_i = 25 (125) \text{ C}$ $T_i = 25 (125) \text{ °C}$						4,5 (5,8)	mΩ
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(20)	0.8	mA
CES	T _i = 25 (125) °C					(- /	-,-	
E _{on} + E _{off}	I _C = 350 A, V _{CC} = 600 V					105	mJ	
	T _i = 125 °C	s, V _{CC} = 90	00 V				185	mJ
R _{CC' + EE'}	terminal ch	ip, T _i = 12	5 °C			0,25		mΩ
L _{CE}	top, bottom	1				7,5		nΗ
C _{CHC}	per phase,	AC-side				2,8		nF
Inverse diode								
$V_F = V_{EC}$	I _F = 300 A,	$T_i = 25 (1$	25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_i = 25 (12)$					1,3 (1)	1,4 (1,1)	V
r_T	$T_{j} = 25 (12)$					2,5 (3)	3,4 (3,9)	mΩ
E _{rr}	$I_{\rm C} = 350 \text{A},$	$V_{CC} = 60$	0 V				12	mJ
	T _j = 125 °C	$V_{CC} = 90$	00 V				15	mJ
Mechani	cal data							
M _{dc}	DC termina	ıls, SI Uni	ts		6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
w	SKiiP® 2 System w/o heat sink					3,5		kg
w	heat sink					8,5		kg
Thermal	characte	ristics (P16 hea	t sink; 2	75m ³ /h);	"_ " refer	ence to	•
	ure sens				-	•		
$R_{th(j-s)l}$	per IGBT						0,064	K/W
$R_{th(j-s)D}$	per diode						0,188	K/W
R _{th(s-a)}	per module	:					0,033	K/W
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	7	50	8	0	1	0,13	0,001	1
$Z_{th(j-r)D}$	21	144	23	0	1	0,13	0,001	1
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

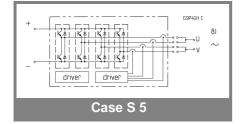
SKiiP 432GH120-4D

Absolute	Maximum Ratings T _a	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f_{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 432GH120-4D


Gate driver features

- Two seperate and independent "GB"-type driver
- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- Fibre optic interface (option)
- IEC 60068-1 (climate) 25/85/56

Characteristics (T _a					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+32	210+320*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+220*f/f _{max} +1,0*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance	10			kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage	400			Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		500		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

