

This product is obsolete.

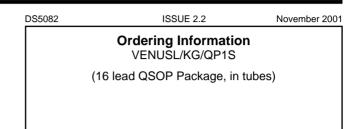
This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit

http://products.zarlink.com/obsolete_products/

VENUS-L

CDMA/AMPS Dual Band and RF Receiver


Datasheet

Features

- Selectable dual RF input ports for 900MHz AMPS and 1900MHz CDMA bands.
- Power Management Control

Description

VENUS-L is a dual integrated mixer circuit designed to meet the IS95 and J-STD-008 receive system specifications, operating in the 900MHz and 1900MHz bands. Venus-L built on a Zarlink advanced bipolar process with an F_{T} of 25GHz.

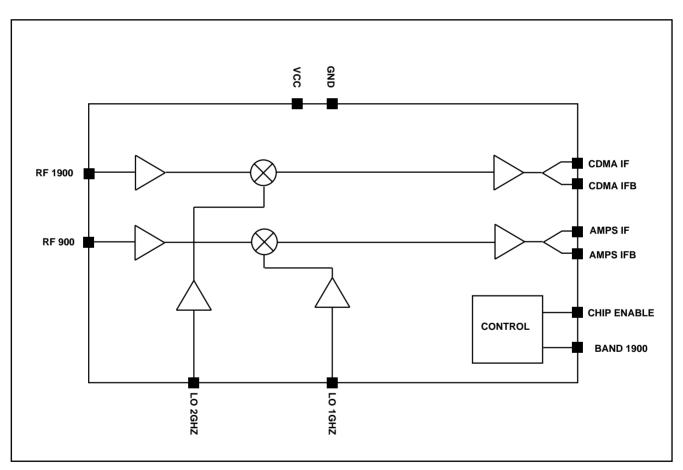


Figure 1 - Block diagram

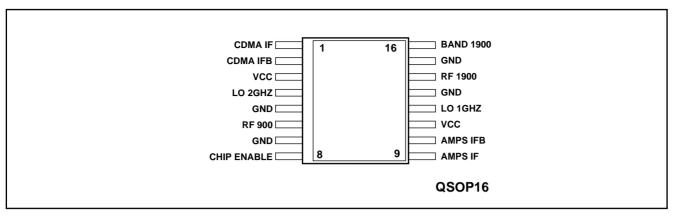


Figure 2 - Pin Connections

Circuit Description

The RF section of VENUS-L contains all of the circuitry necessary to downconvert the RF signal from 900 MHz or 1900 MHz to an IF of 50-250 MHz, and to correctly interface with a suitable IF SAW filter. Two RF inputs are provided, one for the 1900MHz band and one for the 900 MHz band. The required input is activated by means of the 'BAND 1900' pin.

The input is a g_m stage which will provide a characteristic impedance to correctly terminate the RF image-reject SAW filter.

Two LO ports are provided, one for 1900MHz band and one for 900 MHz band, both with low noise buffer amplifiers.

External matching components are required on the RF, LO and IF ports.

Pin Description

Pin No	Pin Name	Description
1	CDMA IF	CDMA (1900MHz mixer) IF SAW output
2	CDMA IFB	CDMA (1900MHz mixer) IF SAW output bar
3	VCC	Positive supply
4	LO 2GHZ	2 GHz LO input for 1900MHz mixer
5	GND	Ground
6	RF 900	900MHz RF input
7	GND	Ground
8	CHIP ENABLE	Logic input for chip enable
9	AMPS IF	AMPS (900MHz mixer) IF SAW output
10	AMPS IFB	AMPS (900MHz mixer) IF SAW output bar
11	VCC	Positive supply
12	LO 1GHZ	1GHz LO input for 900MHz mixer
13	GND	Ground
14	RF 1900	1900MHz RF input
15	GND	Ground
16	BAND 1900	Logic input to select 1900MHz or 900MHz signal path operation

Absolute Limits

Description	Min.	Тур.	Max.	Units	Comments
Supply voltage, Vcc			4.0	V	
Operating temperature, Top	-30		70	deg C	Pin temperature
Storage temperature, Tstg	-40		125	deg C	Ambient temperature
Junction temperature	-30		125	deg C	
Logic input high, VIH			Vcc+0.6	V	
Logic input low, VIL	-0.6			V	

Electrostatic Protection. High frequency RF device. This device has limited ESD protection on some pins (500V Human body Model). Electrostatic handling precautions must be applied.

Operating Modes

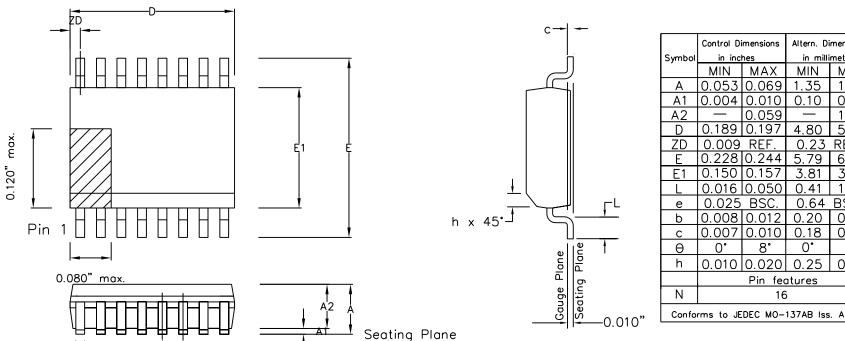
Description	CHIP ENABLE	BAND 1900	Comments
Standby Mode	0	Х	All circuits powered down
900MHz (AMPS)	1	0	900MHz (AMPS) signal path enabled
1900MHz (CDMA)	1	1	1900MHz (CDMA) signal path enabled

Electrical Characteristics (DC specification)

 $T_{AMB} = -30^{\circ}\text{C}$ to $+70^{\circ}\text{C}$, $V_{CC} = +2.7$ to +3.6V. These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage ranges unless otherwise stated.

Characteristic		Value		Units Conditions	
	Min	Тур	Max		
General					
Supply voltage	2.7	3.0	3.6	V	All Vcc pins.
Operating. Temperature	-30	25	70	deg C	Ambient
Current Consumption					
Standby Mode, RF section		10	100	μΑ	
1900MHz Mode operation		15		mA	
900MHz Mode operation		13		mA	
Control Logic					
Input logic high, VIH	Vcc-0.5		Vcc+0.1	V	All logic inputs
Input logic low, VIL	-0.1		0.5	V	All logic inputs
Input high current, IIH	-10		10	μΑ	All logic inputs
Input low current, IIL	-10		10	μΑ	All logic inputs

VENUS-L Datasheet


Electrical Characteristics (AC specification) $T_{AMB} = -30^{\circ}\text{C to } +70^{\circ}\text{C}, \text{ V}_{CC} = +2.7 \text{ to } +3.6\text{V}. \text{ These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage ranges unless otherwise stated. Unless otherwise stated the frequencies used for measurements are to be. 1900MHz Signal Path: RF = 1960MHz, LO = 1749.62MHz, IF = 210.38MHz.$

Characteristic		Value		Units Conditions		
	Min	Тур	Max			
1900MHz Signal Path					Input = RF 1900 Output =CDMA IF and CDMA IFB	
Overall Power Gain, RF input to IF output	8	9	10	dB	LO= -10dBm from a 50 Ohm source	
Noise Figure		9	11	dB	Total to IF outputs (SSB).	
Input third order intercept point		4		dBm		
RF Input impedance		50		Ohm	With simple external matching network. Matching network must include an inductor connected between the RF 1900 pin and GND.	
RF port Return Loss		15		dB	With simple external matching network. Matching network mus include an inductor connected between the RF 1900 pin and GND	
RF Frequency	1800		2000	MHz		
IF Frequency	50		250	MHz		
Input 1dB compression Load impedance	-10		1000	dBm Ω	Differential. Will require an external resistor and a simple external matching network.	

Electrical Characteristics (**AC specification**) Continued $T_{AMB} = -30\,^{\circ}\text{C}$ to $+70\,^{\circ}\text{C}$, $V_{CC} = +2.7$ to +3.6V. These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage ranges unless otherwise stated. Unless otherwise stated the frequencies used for measurements are to be. 900MHz Signal Path: RF = 881.5MHz, LO = 966.88MHz, IF = 85.38MHz.

Characteristic	Value			Units	Conditions
	Min	Тур	Max		
900MHz Signal Path					Input=RF 900 Output=AMPS IF and AMPS IFB
Overall Power Gain, RF input to IF output	7	8	9	dB	LO= -10dBm from a 50ohm source
Noise Figure		9	11	dB	Total to IF outputs (SSB).
Input third order intercept point		5		dBm	
RF Input impedance		50		Ohm	With simple external matching network. Matching network must include an inductor connected between the RF 900 pin and GND.
Return Loss		15		dB	With simple external matching network. Matching network must include an inductor connected between the RF 900 pin and GND
RF Frequency	800		1000	MHz	
IF Frequency	50		250	MHz	
Input 1dB compression	-8			dBm	
Load impedance		850		Ω	Differential. Will require an externa lresistor and a simple external matching network.
RF LO BUFFERS					
LO feedthrough to IF outputs			-30	dBm	
LO feedthrough to RF inputs	-10		-40 -5	dBm dBm	
LO input level LO input impedance	-10	50	- - 5	dBm Ω	With simple external matching
					network
LO port Return Loss		15		dB	With simple external matching network

5

This drawing supersedes 418/ED/51617/001 (Swindon/Plymouth)

Altern. Dimensions

in millimetres

MAX

1.75

0.25

1.50

5.00

0.25

8°

0.50

MIN

1.35

0.10

4.80

0.23

5.79

3.81

0.41

0.20

0.18

0.

0.64 BSC

MAX

8.

Pin features 16

Notes:

- 1. The chamfer on the body is optional. If it is not present, a visual index feature, e.g. a dot, must be located within the cross-hatched area.
- 2. Controlling dimensions are in inches.
- 3. Dimension D do not include mould flash, protrusion or gate burrs. These shall not exceed 0.006" per side.
- 4. Dimension E1 do not include inter-lead flash or protrusion. These shall not exceed 0.010" per side.
- 5. Dimension b does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.004" total in excess of b dimension.

© Zarlink Semiconductor 2002 All rights reserved.						Package Code
ISSUE	1	2	3		Previous package codes	Package Outline for 16 lead
ACN	201928	207313	212474	ZARLINK SEMICONDUCTOR	QP / Q	QSOP (0.150" Body Width)
DATE	27Feb97	24Aug99	3Apr02	SEMICONDUCTOR		
APPRD.						GPD00290

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE