

MPEG Clock Generator with VCXO

Features

- Integrated phase-locked loop (PLL)
- Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4)
- · Application compatibility for a wide variety of designs
- Enables design compatibility
- Lower drive strength settings (CY241V08A-04)

Benefits

- Digital VCXO control
- · Second source for existing designs
- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system
 designs

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08A-01	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY241V08A-04	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz		Same as CY241V08A-01 except lower drive strength settings

198 Champion Court •

Pin Description

Name	Pin Number	Description		
XIN	1	Reference crystal input		
VDD	2	Voltage supply		
VCXO	3	Input analog control for VCXO		
VSS	4	round		
27 MHz	5	/-MHz clock output		
NC/VDD	6	No connect or voltage supply		
NC/VSS	7	o connect or ground		
XOUT	8	Reference crystal output		

Absolute Maximum Conditions

(Above which the useful life may be impaired. For user guidelines, not tested.) Supply Voltage (Vpp) -0.5 to +7.0V

Supply voltage (v _{DD})	–0.5 l0 +7.0 v
DC Input Voltage	–0.5V to V _{DD} + 0.5

CY241V08A-01,04 CY241V8A-01

Storage Temperature (Non-condensing) –55°C to +125°C	
Junction Temperature40°C to +125°C	
Data Retention @ Tj = 125°C> 10 years	•
Package Power Dissipation	!
ESD (Human Body Model) MIL-STD-883> 2000V	,

Pullable Crystal Specifications^[1]

Parameter	Description	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	_	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		_	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R_1 values are much less than the maximum spec	3	-	-	-
DL	Crystal drive level	No external series resistor assumed	150	-	-	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	-	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	-	-150	ppm
C ₀	Crystal shunt capacitance		_	-	7	pF
C ₀ /C ₁	Ratio of shunt to motional capaci- tance		180	-	250	_
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min.	Тур.	Max.	Unit
VDD	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	-	70	°C
C _{LOAD}	Max. Load Capacitance	_	-	15	pF
t _{PU}	Power-up time for all VDD pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	_	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{ОН}	Output HIGH Current	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24	-	mA
I _{OL}	Output LOW Current	V _{OL} = 0.5V, V _{DD} = 3.3V	12	24	-	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	-	-	7	pF
V _{VCXO}	VCXO Input Range		0	-	V _{DD}	V
f _{ΔXO} [2]	VCXO Pullability Range	Low Side	-	-	-115	ppm
		High Side	115	-	-	ppm
I _{VDD}	Supply Current		_	30	35	mA

Notes:

Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
 -115/+115 ppm assumes 2.5pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.

AC Electrical Specifications ($V_{DD} = 3.3V$)^[3]

Parameter ^[3]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in <i>Figure 1</i> , 50% of V_{DD}	45	50	55	%
ER _{OR}	Rising Edge Rate –01	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .	0.8	1.4	_	V/ns
ER _{OF}	Falling Edge Rate –01	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .	0.8	1.4	_	V/ns
ER _{OR}	Rising Edge Rate –04	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See <i>Figure 2</i> .	0.7	1.1	-	V/ns
ER _{OF}	Falling Edge Rate –04	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See Figure 2.	0.7	1.1	-	V/ns
t ₉	Clock Jitter	Peak-to-peak period jitter	-	-	100	ps
t ₁₀	PLL Lock Time		_	-	3	ms

Test and Measurement Set-up

Voltage and Timing Definitions

Figure 1. Duty Cycle Definition

Figure 2. ER = $(0.6 \text{ x V}_{DD})/t_3$, EF = $(0.6 \text{ x V}_{DD})/t_4$

Note: 3. Not 100% tested.

Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY241V08ASC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-01T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04T	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
Lead-free	<u>.</u>			-
CY241V8ASXC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-01T	8-pin SOIC - Tape and Reel	Commercial	3.3V	Linear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C

All product or company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

ocument Title: CY241V08A-01,04/ CY241V8A-01MPEG Clock Generator with VCXO ocument Number: 38-07656							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	214069	See ECN	RGL	New Data Sheet			
*A	220404	See ECN	RGL	Minor Change: To post on web			
*В	393122	See ECN	RGL	Added Lead-free device for -01 Added the CY241V8A-01 in the title			
*C	414184	See ECN	RGL	Minor Change: Deleted unneccesary text in the benefit section			