MPEG Clock Generator with VCXO

Features

- Integrated phase-locked loop (PLL)
- Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation
- Compatible with MK3727 (-1, -4)
- Application compatibility for a wide variety of designs
- Enables design compatibility
- Lower drive strength settings (CY241V08A-04)

Benefits

- Digital VCXO control
- Second source for existing designs
- Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
-

CY241V08A-01,-04 Logic Block Diagram

Pin Configurations
CY241V08A-01,-04
8-pin SOIC

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08A-01	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY241V08A-04	1	13.5-MHz pullable crystal input per Cypress specification	1 copy of 27 MHz	linear	Same as CY241V08A-01 except lower drive strength settings

CYPRESS

Pin Description

Name	Pin Number	
XIN	1	Reference crystal input
VDD	2	Voltage supply
VCXO	3	Input analog control for VCXO
VSS	4	Ground
27 MHz	5	27-MHz clock output
NC/VDD	6	No connect or voltage supply
NC/VSS	7	No connect or ground
XOUT	8	Reference crystal output

Absolute Maximum Conditions

(Above which the useful life may be impaired. For user guidelines, not tested.)
Supply Voltage (V_{DD}) \qquad -0.5 to +7.0 V
DC Input Voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5$

Storage Temperature (Non-condensing) $\ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature................................ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Data Retention @ $\mathrm{Tj}=125^{\circ} \mathrm{C}$ \qquad > 10 years
Package Power Dissipation. \qquad
ESD (Human Body Model) MIL-STD-883.................> 2000V

Pullable Crystal Specifications ${ }^{[1]}$

Parameter	Description	Comments	Min.	Typ.	Max.	Unit
$\mathrm{F}_{\text {NOM }}$	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	-	13.5	-	MHz
$\mathrm{C}_{\text {LNOM }}$	Nominal load capacitance		-	14	-	pF
R_{1}	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
$\mathrm{R}_{3} / \mathrm{R}_{1}$	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R R_{1} values are much less than the maximum spec	3	-	-	-
DL	Crystal drive level	No external series resistor assumed	150	-	-	$\mu \mathrm{W}$
$\mathrm{F}_{3 \text { SEPHI }}$	Third overtone separation from $3^{\star} \mathrm{F}_{\text {NOM }}$	High side	300	-	-	ppm
$\mathrm{F}_{3 \text { SEPLO }}$	Third overtone separation from $3^{\star} \mathrm{F}_{\text {NOM }}$	Low side	-	-	-150	ppm
C_{0}	Crystal shunt capacitance		-	-	7	pF
$\mathrm{C}_{0} / \mathrm{C}_{1}$	Ratio of shunt to motional capaci- tance		180	-	250	-
C_{1}	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min.	Typ.	Max.	Unit
VDD	Operating Voltage	3.135	3.3	3.465	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature	0	-	70	${ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {LOAD }}$	Max. Load Capacitance	-	-	15	pF
$\mathrm{t}_{\text {PU }}$	Power-up time for all VDD pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	-	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min.	Typ.	Max.	Unit
I_{OH}	Output HIGH Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	12	24	-	mA
I_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	12	24	-	mA
C_{IN}	Input Capacitance	Except XIN, XOUT pins	-	-	7	pF
$\mathrm{V}_{\mathrm{VCXO}}$	VCXO Input Range		0	-	V_{DD}	V
$\mathrm{f}_{\triangle \mathrm{XO}}{ }^{[2]}$	VCXO Pullability Range	Low Side	-	-	-115	ppm
		High Side	115	-	-	ppm
$\mathrm{I}_{\mathrm{VDD}}$	Supply Current		-	30	35	mA

Notes:

1. Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTLO01050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
2. $-115 /+115 \mathrm{ppm}$ assumes 2.5 pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.

AC Electrical Specifications $\left(V_{D D}=3.3 \mathrm{~V}\right){ }^{[3]}$

Parameter ${ }^{[3]}$	Name	Description	Min.	Typ.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 1, 50\% of $\mathrm{V}_{\text {DD }}$	45	50	55	\%
ER ${ }_{\text {OR }}$	Rising Edge Rate -01	Output Clock Edge Rate, Measured from 20\% to 80% of V_{DD}, CLOAD $=15 \mathrm{pF}$ See Figure 2.	0.8	1.4	-	V/ns
$\mathrm{ER}_{\text {OF }}$	Falling Edge Rate -01	Output Clock Edge Rate, Measured from 80\% to 20% of V_{DD}, CLOAD $=15 \mathrm{pF}$ See Figure 2.	0.8	1.4	-	V/ns
$\mathrm{ER}_{\text {OR }}$	Rising Edge Rate -04	Output Clock Edge Rate, Measured from 20\% to 80% of V_{DD}, CLOAD $=15 \mathrm{pF}$ See Figure 2.	0.7	1.1	-	V/ns
$E R_{\text {OF }}$	Falling Edge Rate -04	Output Clock Edge Rate, Measured from 80\% to 20% of V_{DD}, CLOAD = 15 pF See Figure 2.	0.7	1.1	-	V/ns
t9	Clock Jitter	Peak-to-peak period jitter	-	-	100	ps
t_{10}	PLL Lock Time		-	-	3	ms

Test and Measurement Set-up

Voltage and Timing Definitions

Figure 1. Duty Cycle Definition

Figure 2. $\mathrm{ER}=\left(0.6 \times \mathrm{V}_{\mathrm{DD}}\right) / \mathrm{t}_{3}, \mathrm{EF}=\left(0.6 \times \mathrm{V}_{\mathrm{DD}}\right) / \mathrm{t}_{4}$
Note:
3. Not 100\% tested.

Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY241V08ASC-01	8-pin SOIC	Commercial	3.3 V	Linear VCXO control curve
CY241V08ASC-01T	8-pin SOIC - Tape and Reel	Commercial	3.3 V	Linear VCXO control curve
CY241V08ASC-04	8-pin SOIC	Commercial	3.3 V	Linear VCXO control curve
CY241V08ASC-04T	8-pin SOIC - Tape and Reel	Commercial	3.3 V	Linear VCXO control curve
Lead-free				
CY241V8ASXC-01	8-pin SOIC	Commercial	3.3 V	Linear VCXO control curve
CY241V8ASXC-01T	8-pin SOIC - Tape and Reel	Commercial	3.3 V	Linear VCXO control curve

Package Drawing and Dimensions

8-lead (150-Mil) SOIC S8

51-85066-*C
All product or company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY241V08A-01,04/ CY241V8A-01MPEG Clock Generator with VCXO Document Number: 38-07656				
REV.	ECN NO.	Issue Date	Orig. of Change	
$* *$	214069	See ECN	RGL	New Data Sheet
${ }^{*}$ A	220404	See ECN	RGL	Minor Change: To post on web
${ }^{* B}$	393122	See ECN	RGL	Added Lead-free device for -01 Added the CY241V8A-01 in the title
*C	414184	See ECN	RGL	Minor Change: Deleted unneccesary text in the benefit section

