

SANYO Semiconductors DATA SHEET

Bi-CMOS IC Pulse Driver IC

Overview

The LA9450CL is a pulse driver IC for laser diode that enables low voltage operation.

Features

- Two-power voltage design for low power consumption. Two-mode switching function of DC (supplied from V_{CC}1: 2.4V) and pulse luminescence (supplied from V_{CC}2: 2.8V).
- Low voltage (V_{CC}1=2.0V min, V_{CC}2=2.6V min) and low current consumption (I_{CC}1=500µA) design.
- Low saturation PNP driver is used for DC mode for the low VCEsat.
- Small package ECSP3020-10 (size 3×2mm, pin pitch 0.65mm)

Function

- Laser driver
- Two-mode switching functions of DC and pulse luminescence

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		4.5	V
Allowable power dissipation	Pd max	For every 1°C rise in temperature over 25°C, the power is reduced by a factor of 1.55mW/°C	150	mW
Operating temperature	Topr		-10 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co., Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Condition at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommend supply voltage	V _{CC} 1		2.4	V
	V _{CC} 2		2.8	V
Operating supply voltage range	V _{CC} 1 opg		2.0 to 3.5	V
	V _{CC} 2 opg		2.6 to 3.5	V

Electrical Characteristics at Ta = 25°C, $V_{CC}1$ = 2.4V, $V_{CC}2$ = 2.8V, R_L = 25 Ω

Doromotor	Symbol	Conditions		Ratings			unit
Farameter	Symbol			min	typ	max	unit
Supply current 1	I _{CC} 11	I _{IN} =0μA, Vcont=V _{CC} 2	V _{CC} 1	300	500	1500	μA
DC mode	I _{CC} 12	VSW=0V, RL=∞	V _{CC} 2		0.1	5	μA
Supply current 2	I _{CC} 21	I _{IN} =0μA, Vcont=V _{CC} 2	V _{CC} 1	300	500	670	μA
Pulse mode	I _{CC} 22	VSW=V _{CC} 2	V _{CC} ²	70	110	150	μΑ
Supply current 3	I _{CC} 31	I _{IN} =500μA, Vcont=0V	V _{CC} 1	300	530	710	μA
Pulse mode	I _{CC} 32	VSW=V _{CC} 2	V _{CC} 2	68	80	93	mA
Output current	IOUT	I _{IN} =500μA, Vcont=0V		65	75	85	mA
Current gain	Igain	I _{IN} =500μA, Vcont=0V		130	150	170	
Maximum output current Pulse	IOUT maxP	I _{IN} =1200μA, Vcont=0V, R _L =10Ω		140	165	210	mA
Maximum output current DC	I _{OUT} maxD	I _{IN} =1200μA, Vcont=0V, R _L =10Ω		150	175	210	mA
Maximum output voltage Pulse	V _{OUT} maxP	I _{IN} =1000μA, Vcont=0V, VSW=V _{CC} 2		2.4	2.58		V
Maximum output voltage DC	V _{OUT} maxD	I _{IN} =1000μA, Vcont=0V, VSW=0V		2.15	2.24		V
Cont high level	Vcont H			V _{CC} 2/2		V _{CC} 2+0.2	V
Cont low level	Vcont L			-0.2		0.4	V
SW High level	VSW H			V _{CC} 1-0.7		V _{CC} 2+0.2	V
SW Low level	VSW L			-0.2		0.15	V
I _{IN} Input resistance	R _{IN}			270	330	390	Ω
* Rising edge time	tr	R_L =10Ω, I _{OUT} peak=40mA, 10→90%			2.9	4.1	ns
* Falling edge time	tf	R _L =10Ω, I _{OUT} peak=40mA, 90→10%			6.1	8.6	ns
*Cont falling edge delay time	Tondelay	I _{OUT} peak=55mA, cont 50%→Output 50%			6.8	8.9	ns
*Cont falling edge delay time	Tofdelay	I _{OUT} peak=55mA, cont 50%→Output 50%			10.8	14.1	ns

* Design target value and no measurement is performed.

Package Dimensions unit : mm (typ) 3291 Top View Bottom View 2.0 0.3 0.3 0.65 3.0 6 0.05 (0.8) 0.8 (0.015) SANYO : ECSP3020-10

Pin Assignment

Block Diagram

Pin Functions

Pin No	Pin Name	Pin Description	Equivalent Circuit
1	NC	NC	
2	lout	This is a LD driver output terminal.	V _{CC} ² V _{CC} ¹
3	V _{CC} 2	This is a supply terminal for a pulse driver output. In DC luminescence mode, voltage which is bigger than V_{CC} 1, and flowing are available.	
4	Cont	"Low" at pulse driver, and lout output is ON.	Vcc ²
5	GND		
6	SW UY	Low: DC, High: Pulse)	
7	^I IN	This is a controlled current input terminal. (Input resistance 330Ω)	
8	NC	NC	
9	V _{CC} 1	This is a power supply terminal of a controlled circuit and driver output at DC luminescence. This can be connected to V_{CC} 2 to use as a common power supply.	
10	NC	NC	

Test Circuit

Power supplies of IOUT drive current - Pulse mode: VCC2 DC mode: VCC1 $$\rm VCC1$$

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of April, 2007. Specifications and information herein are subject to change without notice.