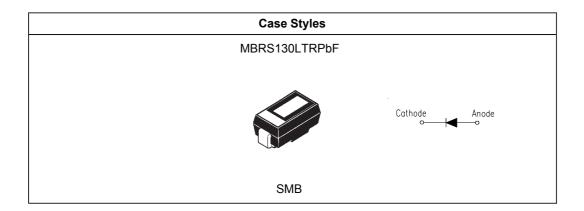
International Rectifier

MBRS130LTRPbF

SCHOTTKY RECTIFIER

1 Amp

 $I_{F(AV)} = 1.0 \text{ Amp}$ $V_R = 30 \text{ V}$


Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	30	V
I _{FSM} @t _p =5μs sine	230	А
V _F @1.0Apk, T _J =125°C	0.30	V
T _J range	- 55 to 125	°C

Description/ Features

The MBRS130LTRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Bulletin PD-20403 07/04

International

TOR Rectifier

Voltage Ratings

	Part number	MBRS130LTRPbF	
V _R	Max. DC Reverse Voltage (V)	20	
V _{RWM} Max. Working Peak Reverse Voltage (V)		30	

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _L = 106 °C, rectangular wave for	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	230	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	40		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	3.0	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1A, L = 6\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Value	Units		Conditions
V _{FM}	Max. Forward Voltage Drop (1)	0.420	V	@ 1A	T,= 25 °C
		0.470	V	@ 2A	1 ₃ = 23 C
		0.300	V	@ 1A	T ₁ = 125 °C
		0.370	V	@ 2A	1, 120 0
		1	mA	T _J = 25 °C	
I _{RM}	Max. Reverse Leakage Current (1)	10	mA	T _J = 100 °C	V_R = rated V_R
		20	mA	T _J = 125 °C	
C _T	Max. Junction Capacitance	200	pF	$V_R = 5V_{DC}$ (test signal range 100KHz to 1Mhz) 25°C	
L _s	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range(*)	-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	25	°C/W	DC operation (See Fig. 4)
R _{thJA}	Max. Thermal Resistance Junction to Ambient	80	°C/W	DC operation
wt	Approximate Weight	0.10(0.003)	g (oz.)	
	Case Style	SMB		Similar to DO-214AA
	Device Marking	IR13L		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

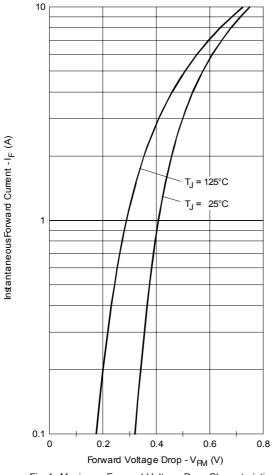


Fig. 1 - Maximum Forward Voltage Drop Characteristics

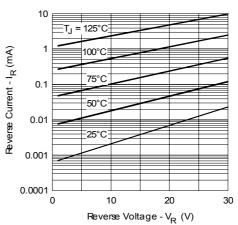


Fig. 2 - Typical Peak Reverse Current Vs. Reverse Voltage

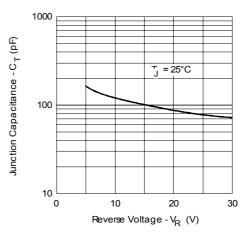


Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

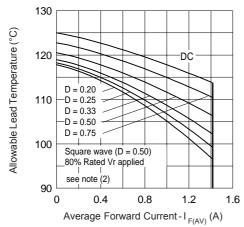


Fig. 4 - Maximum Average Forward Current Vs. Allowable Lead Temperature

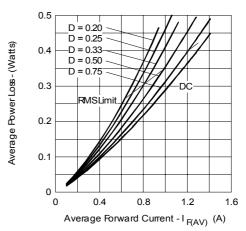


Fig. 5 - Maximum Average Forward Dissipation Vs. Average Forward Current

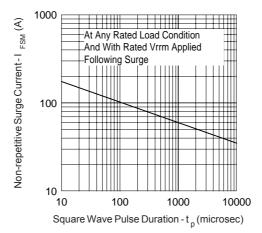
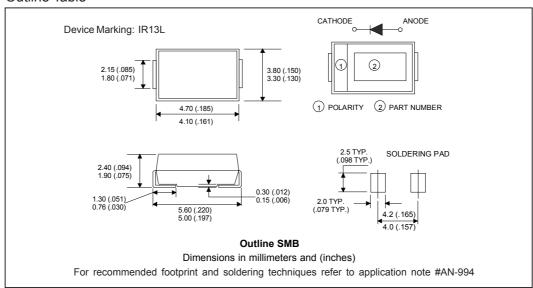
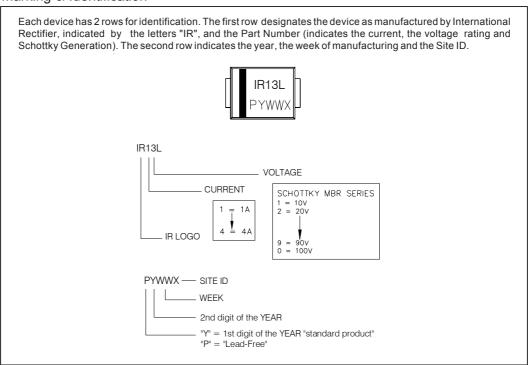
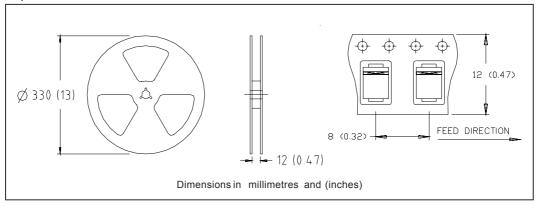



Fig. 6 - Maximum Peak Surge Forward Current Vs. Pulse Duration

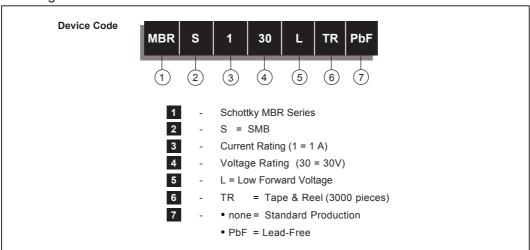

 $\begin{aligned} \textbf{(2)} \ \ &\text{Formula used:} \ &\text{T_{C}=T_{J}-(Pd+$Pd}_{REV}$)$ x R_{thJC}; \\ &\text{Pd=$Forward PowerLoss}$=$I_{F(AV)}$ x $V_{FM}@(I_{F(AV)}/D)$ (see Fig. 6); \\ &\text{$Pd}_{REV}$=& Inverse PowerLoss$=$V_{R1}$ x I_{R} (1-D); I_{R} @V_{R1}=80% rated V_{R}. \end{aligned}$

Bulletin PD-20403 07/04

Outline Table



Marking & Identification



Bulletin PD-20403 07/04

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04