

133 MHz Spread Spectrum Clock Synthesizer/Driver with AGP, USB, and DRCG Support

Features	Benefits
Mixed 2.5V and 3.3V Operation	Usable with Pentium [®] II and Pentium [®] III processors
 Compliant to Intel[®] CK133 (CY2210-3) & CK133W (CY2210-2) synthesizer and driver specification 	
 Multiple output clocks at different frequencies 	Single-chip main motherboard clock generator
 Four CPU clocks, up to 133 MHz 	 Driven together, support 4 CPUs and a chipset
 — Eight synchronous PCI clocks, 1 free-running 	 — Support for 4 PCI slots and chipset
 — Two CPU/2 clocks, at one-half the CPU frequency — Four AGP clocks at 66 MHz 	 Drives up to two main memory clock generators, including DRCG (CPUCLK/2)
— Three synchronous APIC clocks, at 16.67 MHz	 — Support for multiple AGP slots
— One USB clock at 48 MHz	 — Support multiprocessing systems
— Two reference clocks at 14.318 MHz	 — Supports USB frequencies and I/O chip
Spread Spectrum clocking	Enables reduction of EMI in some systems
 — 32.5-kHz modulation frequency @ 133 MHz 	
 — 33.1-kHz modulation frequency @ 100 MHz for CY2210-02/03 	
 — 33.4-kHz modulation frequency @ 100 MHz for CY2210-04 	
 — EPROM programmable percentage of spreading. Default is –0.6%, which is recommended by Intel 	
Power-down features	Supports mobile systems
Three Select inputs	Supports up to eight CPU clock frequencies
Low-skew and low-jitter outputs	Meets tight system timing requirements at high frequency
OE and Test Mode support	Enables ATE and "bed of nails" testing
56-pin SSOP package	Widely available, standard package enables lower cost

 Rev 1.0, November 25, 2006

 2200 Laurelwood Road, Santa Clara, CA 95054
 Tel:(408) 855-0555
 Fax:(408) 855-0550

Pin Summary

Name	Pins	Description
V _{SSREF}	1	3.3V Reference ground
V _{DDREF}	4	3.3V Reference voltage supply
V _{SSPCI}	7, 13, 19	3.3V PCI ground
V _{DDPCI}	10, 16	3.3V PCI voltage supply
V _{SSAGP}	20, 24	3.3V AGP ground
V _{DDAGP}	23, 27	3.3V AGP voltage supply
V _{SSUSB}	29	3.3V USB ground
V _{DDUSB}	31	3.3V USB voltage supply
V _{SSCPU}	40, 44	2.5V CPU ground
V _{DDCPU}	43, 47	2.5V CPU voltage supply
V _{SSCPU} /2	48	2.5V CPU/2 ground
V _{DDCPU} /2	51	2.5V CPU/2 voltage supply
V _{SSAPIC}	52	2.5V APIC ground
V _{DDAPIC}	56	2.5V APIC voltage supply
AV _{SS}	38	Analog ground to PLL and Core
AV _{DD}	39	Analog voltage supply to PLL and Core
XTALIN ^[1]	5	Reference crystal input
XTALOUT ^[1]	6	Reference crystal feedback
CPUCLK [0-3]	41, 42, 45, 46	CPU clock outputs
PCICLK [1–7]	9, 11, 12, 14, 15, 17, 18	PCI clock outputs, synchronously running at 33.33 MHz
PCICLK_F	8	Free running PCI clock
CPUCLK/2	49, 50	CPU/2 clock outputs, drive memory clock generator
AGPCLK [0–3]	21, 22, 25, 26	AGP clock outputs, running at 66.66 MHz
APICCLK [0-2]	53, 54, 55	APIC clock outputs, running at 16.67 MHz
REFCLK [0-1]	2, 3	Reference clock outputs, 14.318 MHz
USBCLK	30	48-MHz USB clock output
CPU_STOP	36	Active LOW input, disables CPU and AGP clocks when asserted
PCI_STOP	37	Active LOW input, disables PCI clocks when asserted
PWR_DWN	35	Active LOW input, powers down part when asserted
SPREAD	34	Active LOW input, enables spread spectrum when asserted
SEL1	33	CPU frequency select input (See Function Table)
SEL0	32	CPU frequency select input (See Function Table)
SEL133	28	CPU frequency select input (See Function Table)

Note:

1. For best accuracy, use a parallel-resonant crystal, C_{LOAD} = 18 pF. For crystals with different C_{LOAD}, please refer to the application note, "Crystal Oscillator Topics."

Function Table^[2]

SEL133	SEL1	SEL0	CPUCLK (MHz)	CPUCLK/2 (MHz)	AGPCLK (MHz)	PCICLK (MHz)	USBCLK (MHz)	REFCLK (MHz)	APICCLK (MHz)
0	0	0	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z
0	0	1	100.227 ^[3]	50.114 ^[3]	66.818 ^[3]	33.409 ^[3]	48.008 ^[3]	14.318 ^[3]	16.705 ^[3]
0	1	0	100	50	66.67	33.33	OFF	14.318	16.67
0	1	1	100	50	66.67	33.33	48	14.318	16.67
1	0	0	TCLK/2	TCLK/4	TCLK/4	TCLK/8	TCLK/2	TCLK	TCLK/16
1	0	1	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1	1	0	133.33	66.67	66.67	33.33	OFF	14.318	16.67
1	1	1	133.33	66.67	66.67	33.33	48	14.318	16.67

Actual Clock Frequency Values

Clock		TargetActualFrequencyFrequency(MHz)(MHz)		РРМ					
Output	-2	-3	-4	-2	-3	-4	-2	-3	-4
CPUCLK	100.0	100.0	100.0	99.126	99.126	100.227	-8740	-8740	+2714
CPUCLK	133.33	133.33	133.33	132.769	132.769	132.769	-4208	-4208	-4208
USBCLK	48.0	48.0	48.0	48.008	48.008	48.008	167	167	167

Clock Enable Configuration

CPU_STOP	PWR_DWN	PCI_STOP	CPUCLK	CPUCLK/2	AGP	PCI	PCI_F	REF APIC	OSC.	VCOs
Х	0	Х	LOW	LOW	LOW	LOW	LOW	LOW	OFF	OFF
0	1	0	LOW	ON	LOW	LOW	ON	ON	ON	ON
0	1	1	LOW	ON	LOW	ON	ON	ON	ON	ON
1	1	0	ON	ON	ON	LOW	ON	ON	ON	ON
1	1	1	ON	ON	ON	ON	ON	ON	ON	ON

Clock Driver Impedances

			Impedance		
Buffer Name	V _{DD} Range	Buffer Type	Minimum Ω	Typical Ω	Maximum Ω
CPU, CPU/2, APIC	2.375–2.625	Type 1	13.5	29	45
USB, REF	3.135–3.465	Туре 3	20	40	60
PCI, AGP	3.135–3.465	Type 5	12	30	55

Notes:
2. TCLK is a test clock driven in on the XTALIN input in test mode.
3. Only CY2210-2 supports this option. In CY2210-3, this selection is defined as "N/A" or "Reserved".

Maximum Ratings

(Above which the useful life may be impaired. For user guide-	Storage Tempe
lines, not tested.)	Junction Temp
Supply Voltage0.5 to +7.0V	Package Powe
Input Voltage0.5V to V _{DD} +0.5	Static Discharg

Storage Temperature (Non-Condensing)65°C to +150°C
Junction Temperature +150°C
Package Power Dissipation1W
Static Discharge Voltage (per MIL-STD-883, Method 3015)>2000V

Operating Conditions Over which Electrical Parameters are Guaranteed

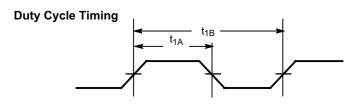
Parameter	Description	Min.	Max.	Unit
V _{DDREF} , V _{DDPCI} , AV _{DD} , V _{DDAGP} , V _{DDUSB}	3.3V Supply Voltages	3.135	3.465	V
V _{DDCPU} , V _{DDCPU/2}	CPU and CPU/2 Supply Voltage	2.375	2.625	V
V _{DDAPIC}	APIC Supply Voltage	2.375	2.625	V
T _A	Operating Temperature, Ambient	0	70	°C
CL	Max. Capacitive Load on CPUCLK, CPUCLK/2, USBCLK, REF, APIC PCICLK, AGP		20 30	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz
t _{PU}	Power-up time for all VDD's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	ms

Electrical Characteristics Over the Operating Range

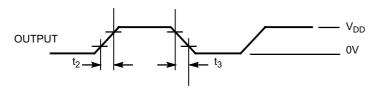
Parameter	Description	Test Conditions			Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = $V_{DD}/2$				V
V _{IL}	Low-level Input Voltage	Except Crystal Pads	Except Crystal Pads			
V _{OH}	High-level Output Voltage ^[4]	CPU, CPU/2, APIC	I _{OH} = –1 mA	2.0		V
		USB, REF, PCI, AGP	I _{OH} = –1 mA	2.4		
V _{OL}	Low-level Output Voltage ^[4]	CPU, CPU/2, APIC	I _{OL} = 1 mA		0.4	V
		USB, REF, PCI, AGP	I _{OL} = 1 mA		0.4	
I _{IH}	Input High Current	$0 \le V_{IN} \le V_{DD}$			10	μA
IIL	Input Low Current	$0 \le V_{IN} \le V_{DD}$			10	μA
I _{OH}	High-level Output	CPU, CPU/2	V _{OH} = 2.0V	-16	-60	mA
	Current ^[4]	APIC	V _{OH} = 2.0V	-20	-72	
		USB, REF	V _{OH} = 2.4V	-15	-51	
		AGP, PCI	V _{OH} = 2.4V	-30	-100	
I _{OL}	Low-level Output Current ^[4]	CPU, CPU/2	V _{OL} = 0.4V	19	49	mA
		APIC	V _{OL} = 0.4V	25	58	
		USB, REF	V _{OL} = 0.4V	10	24	
		AGP, PCI	V _{OL} = 0.4V	20	49	
I _{OZ}	Output Leakage Current	Three-state			10	μA
I _{DD2}	2.5V Power Supply Current	AV _{DD} /V _{DD33} = 3.465V, V _{DD25} = 2.625V, F _{CPU} = 133 MHz			90	mA
I _{DD3}	3.3V Power Supply Current	AV _{DD} /V _{DD33} = 3.465V, V _{DD25} = 2.625V, F _{CPU} = 133 MHz			160	mA
I _{DDPD2}	2.5V Shutdown Current	AV _{DD} /V _{DD33} = 3.465V, V _{DD25} = 2.625V			100	μA
I _{DDPD3}	3.3V Shutdown Current	AV _{DD} /V _{DDQ3} = 3.465V, V _{DD25} = 2.625V			200	μA
Note:	•				•	

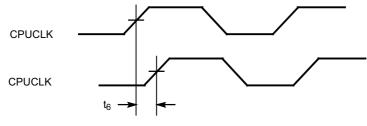
Note:

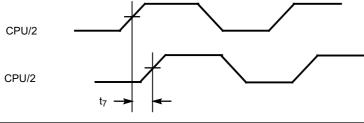
4. Parameter is guaranteed by design and characterization. Not 100% tested in production.

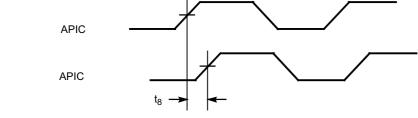

Parameter	Output	Description	Test Conditions	Min.	Max.	Unit
t ₁	All	Output Duty Cycle ^[6]	t _{1A} /t _{1B}	45	55	%
t ₂	CPU, CPU/2, APIC	Rising Edge Rate	Between 0.4V and 2.0V	1.0	4.0	V/ns
t ₂	USB, REF	Rising Edge Rate	Between 0.4V and 2.4V	0.5	2.0	V/ns
t ₂	PCI, AGP	Rising Edge Rate	Between 0.4V and 2.4V	1.0	4.0	V/ns
t ₃	CPU, CPU/2, APIC	Falling Edge Rate	Between 2.0V and 0.4V	1.0	4.0	V/ns
t ₃	USB, REF	Falling Edge Rate	Between 2.4V and 0.4V	0.5	2.0	V/ns
t ₃	PCI, AGP	Falling Edge Rate	Between 2.4V and 0.4V	1.0	4.0	V/ns
t ₆	CPU	CPU-CPU Skew	Measured at 1.25V		175	ps
t ₇	CPU/2	CPU/2-CPU/2 Skew	Measured at 1.25V		175	ps
t ₈	APIC	APIC-APIC Skew	Measured at 1.25V		250	ps
t ₉	AGP	AGP-AGP Skew	Measured at 1.5V		250	ps
t ₁₀	PCI	PCI-PCI Skew	Measured at 1.5V		500	ps
t ₁₁	CPU, AGP	CPU-AGP Clock Skew	CPU leads. Measured at 1.25V for 2.5V clocks and 1.5V for 3.3V clocks	0	1.5	ns
t ₁₂	AGP, PCI	AGP-PCI Clock Skew	AGP leads. Measured at 1.5V	1.5	4.0	ns
t ₁₃	CPU, APIC	CPU-APIC Clock Skew	CPU leads. Measured at 1.25V	1.5	4	ns
t ₁₄	CPU, PCI	CPU-PCI Clock Skew	CPU leads. Measured at 1.25V clocks and 1.5V for 3.3V clocks	1.5	4	ns
	CPU	Cycle-Cycle Clock Jitter	With all outputs running (CY2210-2)		150	ps
	CPU	Cycle-Cycle Clock Jitter	With all outputs running (CY2210-3/-4)		250	ps
	CPU	Cycle-Cycle Clock Jitter	With the USB output turned off (CY2210-3/-4)		200	ps
	CPU/2	Cycle-Cycle Clock Jitter			250	ps
	APIC	Cycle-Cycle Clock Jitter			500	ps
	USB	Cycle-Cycle Clock Jitter			500	ps
	AGP	Cycle-Cycle Clock Jitter			500	ps
	REF	Cycle-Cycle Clock Jitter			1000	ps
	CPU, PCI	Settle Time	CPU and PCI clock stabilization from power-up		3	ms

Switching Characteristics^[4, 5] Over the Operating Range

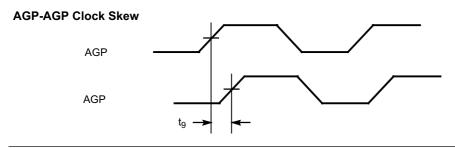

Notes:
5. All parameters specified with loaded outputs.
6. Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V.


Switching Waveforms

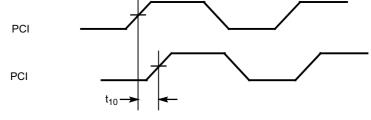

All Outputs Rise/Fall Time

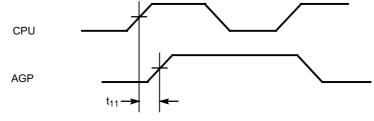

CPU-CPU Clock Skew

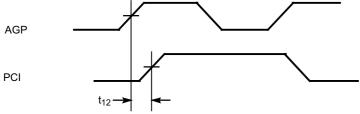
CPU/2 - CPU/2 Clock Skew

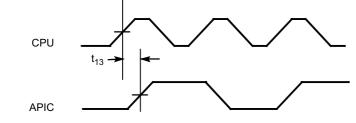


APIC-APIC Clock Skew

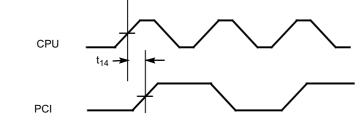


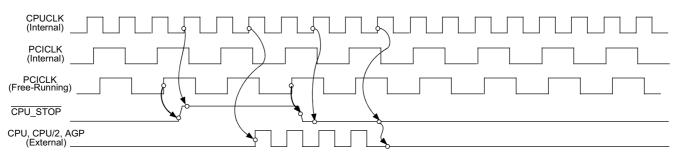

Switching Waveforms (continued)

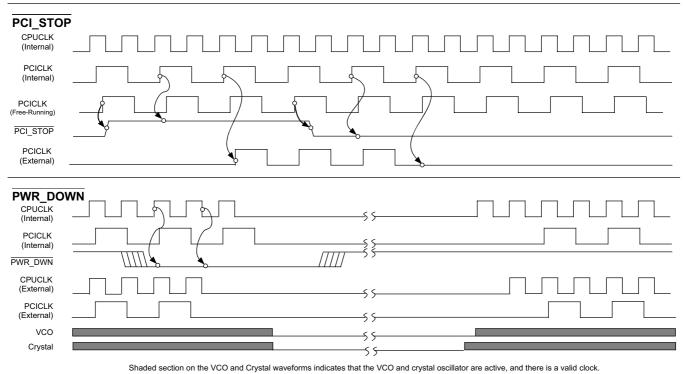

PCI-PCI Clock Skew

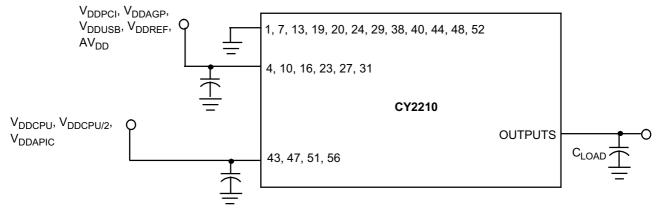

CPU-AGP Clock Skew

AGP - PCI Clock Skew


CPU-APIC Clock Skew




Switching Waveforms (continued)

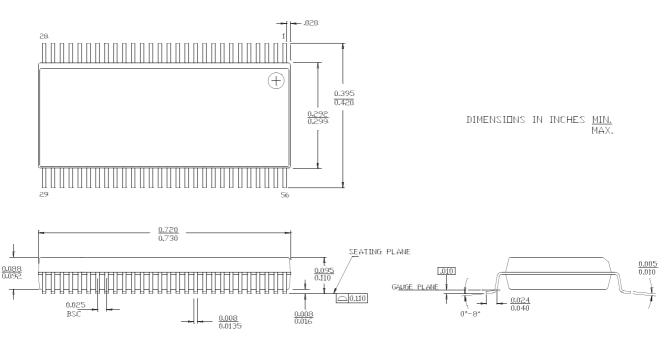


Notes:

<u>CPUCLK on</u> and CPUCLK off latency is 2 or 3 CPUCLK cycles.
 <u>CPU_STOP</u> may be applied asynchronously. It is synchronized internally.

Test Circuit

Note that Each supply pin must have an individual decoupling capacitor.


Note that All capacitors must be placed as close to the pins as is physically possible.

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY2210PVC-2/-3/-4	O56	56-Pin SSOP	Commercial

Package Diagram

56-Lead Shrunk Small Outline Package O56

While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.