

June 2003

Datasheet

DMR01

Low Power Digital Multichannel Receiver

FEATURES

- LOW COST
- MICRO POWER
- DESIGNED FOR DBPSK CODED DATA
- ERROR CORRECTING DECODER
- DIFFERENT TRANSMIT FREQUENCIES
- UNLICENSED FREQUENCY BAND
- DIFFERENT DATA RATES
- SHORT RANGE APPLICATIONS (up to 3m/10ft)
- TSSOP20 PACKAGE

APPLICATIONS

- BATTERY POWERED SYSTEMS
- WIRELESS DATA TRANSMISSION
- ACCESS CONTROL
- ALARM FUNCTIONS
- WIRELESS INTERFACE
- REMOTE CONTROL
- WIRELESS TRANSMISSIONS THROUGH CONDUCTING FLUIDS

General Description

The DMR01 is a micro power receiver chip for low frequency data transmission systems. Based on a 32 kHz clock source, 8 different carrier frequencies from 8.192 kHz to 122.88 kHz are possible ($f_{cr} = (2n+1) \times 8192$ Hz, n = 0..7). Depending on the transmit distance and the transmit time, the DMR01 works with 4 different data rates from 1 to 8 kBaud. The DMR01 is able to receive coded data until with a maximum length of 128 bit for each transmit package. A frame detector gives the possibility to separate the data for different applications. The DMR01 uses a serial SPI register for a simple data exchange with external microcontrollers. Features like input amplifier gain, ADC sensitivity, data rate, selection of coded or uncoded data are programmable via the SPI interface.

Electrical Specifications

AC / DC Characteristics @ VDD = 3.3V, $T_A = 25^{\circ}C$ unless otherwise specified

PARAMETER	CONDITION	MIN	ТҮР	МАХ	UNITS
INPUT RECEIVER BANDWIDTH					
BW0 = 0			10		kHz
BW0 = 1			130		kHz
			400.4		5:1/
Br = 00 Br = 01			1024 2048		Bit/s Bit/s
Br = 10			4096		Bit/s
Br = 11			8192		Bit/s
		o o -	4.05	1.00	
Input Bias Voltage	small signal	0.95 271	1.35 315	1.90 370	V kO
Voltage Gain (@ GA = 00)	onnan orginal	55	67	70	dB
Voltage Gain (@ $GA = 01$)		49	61	64	dB
Voltage Gain ($@$ GA = 10) Voltage Gain ($@$ GA = 11)		43 35	55 47	58 50	dB dB
INPUT @ BW0 = 0					42
Input Bias Voltage		0.95	1.28	1.75	V
Input Impedance	small signal	287	340	410	kΩ
Voltage Gain (@GA = 00) Voltage Gain (@GA = 01)		55 49	69 63	70 64	dB
Voltage Gain (@GA = 10)		43	57	58	dB
Voltage Gain (@GA = 11)		35	49	50	dB
PREAMPLIFIER NOISE @ BW0 = 1					,
Spectral Noise Voltage referred to Input (RMS) Broadband Output Noise	@100kHz		77		nV/√ Hz
PREAMPLIFIER NOISE @ BW0 = 0			105		IIIV
Spectral Noise Voltage referred to Input (RMS)	@ 10kHz		213		nV /√ Hz
Broadband Output Noise	1Hz – 1 MHz		193		mV
POWERUP TIME					
				100	μS
RECEIVER WAKE-UP TIME				400	
SPI-INTERFACE (Sin, Sout, Sck)				100	μs
Logical low level				0.3VDD	V
Logical high level		0.7VDD			V
Clock frequency		80		5	MHz
Clock low time		80			ns
Rise time (Clock)				10	ns
Fall time (Clock)				10 5	ns
Data input hold time				5	ns
Chip select setup time				10	ns
Chip select hold time				10	ns
POWER SUPPLY @ BW0 = 1					
Standby current (Rec on = 0)	No load, no clock		1	5	μΑ
Operating current (Rec on = 1) POWER SUPPLY \oslash BW0 = 0	T _{Clk} =32KHZ		56	105	μΑ
Standby current ($Pap ap = 0$)	No load no clock		1	E	A
Operating current (Rec on = 0)	f _{Clk} =32kHz		43	90	μΑ μΑ
TEMPERATURE					
Specified range		-20	27	60	°C

Absolute maximum ratings

PARAMETER	CONDITION	MIN	ТҮР	МАХ	UNITS
Supply Voltage		2.5	3.6	5.5	V
Voltage @ all Inputs and Outputs Pins		VSS-0.3		VDD+0.3	V
ESD protection on all pins			1		kV
Current @ all Input and Output Pins				10	mA
Operating Temperature		-20		85	°C
Storage Temperature		-65		150	°C
Soldering Temperature	10 seconds			250	°C

Pin Configuration

TSSOP20 package

		1
ANAIN 1		
CMPIN 2		19 AVDD
AVSS 3		18 NC
RECON 4		17 TESTB
DVSS 5		16 CSB
RESB 6	DIVINUT	15 SOUT
F32K 7		14 SIN
IRQB 8		13 SCK
DVSS 9		12 DVDD
CKOUT 10		11 DOUT

Pin #	Name	Description
1	ANAIN	RF input signal
2	CMPIN	Level detect input
3	AVSS	Analog Ground
4	RECON	Power for external circuit
5	DVSS	Digital ground
6	RESB	Reset
7	F32K	Input for external clock
8	IRQB	Interrupt (valid data received)
9	DVSS	Digital ground
10	CLKOUT	Clock for uncoded data
11	DOUT	Uncoded data output
12	DVDD	Digital supply voltage
13	SCK	Serial data clock for SPI
14	SIN	Serial data input for SPI
15	SOUT	Serial output for SPI
16	CSB	Chip select
17	TESTB	Test pin
18	NC	Not connected
19	AVDD	Analog supply voltage
20	ANATST	Test pin (output)

Module Description

Input Amplifier and A/D Conversion

Fig.2: Analog Input stage

consists of an input amplifier, a flash A/D-converter and a comparator for high energy detection of the input signal. The input amplifier has a gain of about 2'000 which simplifies external circuitry. The A/D-converter has a resolution of 4 Bit and converts the input signal into a signed 4 bit word within less than 1 μ s. Sampling frequency is 32'768 Hz. To save power in stand by mode the analog input stage can be switched of ('RecOn'). The comparator detects high level input signals on it's input

Fig. 2 shows a block diagram of the input stage. The input stage

The comparator detects high level input signals on it's input Cmpin. This input is normally connected directly to the receiving antenna. Due to the modulation technique, there will always be a number of sinusoidal waves per transmitted bit. The output of the comparator enters therefore a counter (located in the interface part) which counts the number of waves with high energy. At the end of a transmission the value of this counter gives an information about the energy level of the received data stream. This feature is used to detect if a transmitter is located very close to the receiving antenna.

Bit Estimator

Fig. 3: Bit Estimator

Fig. 3 shows a block diagram of the bit estimator. The bit estimator uses a very sophisticated and efficient algorithm to estimate incoming data out of the 4 bit information of the A/D-converter. It is designed to work with phase modulated input signals. More precisely, the modulation technique is differential binary phase shift keying (DBPSK). This means that there is a phase shift of 180° with every transmitted logic 1. Depending on the programmed baud rate the estimator expects 1, 2, 4 or 8 sinusoidal waves per bit for baud rates of 8'192, 4'096, 2'048 or 1'024 bit/s. The estimator is also able to detect the signal energy. 'Aqual' is high if the estimated bit 'Aest' has an energy level of more than programmed in 'BitQLevel'. 'Aest' and 'Aqual' are updated with the negative edge of 'Clka'. To save power in stand by mode the bit estimator can be switched off ('RecOn').

Frame Detector

Fig.4: Frame Detector

Decoder

Fig.5: Decoder

Interface

Fig. 4 shows a block diagram of the frame detector. It's function is to detect a special string in the incoming data stream of 'Aest' / 'Clka'. The string which will be detected can be programmed with the 12 bit input word 'Frame'. The detector accepts an incoming string as start frame if a certain number of bits ('FrmQLevel') of the incoming frame word have a high energy level ('Aqual' = 1) and a certain number of bits ('NoOfMatch') matche the frame word 'Frame'. In this case the signal 'FMatch' will be change from low to high and the following input bits ('Aest' / 'Clka') will be connected to 'Best' / 'Clkb'. 'Best' is updated with the negative edge of 'Clkb' and the detector will not recognize any other strings until the 'Fclr' input is set to '1'. 'Fclear' is controlled by the interface. It resets the detector if transmission is finished. The frame detection function can be disabled ('Fdeton' = 0). In this case the decoder will also not work and 'Best', 'Clkb' remains 0.

Fig. 5 shows a block diagram of the decoder. It decodes a convolutional code with rate $\frac{1}{2}$ using a polynomial function.

The incoming bits are grouped in pairs of 2 bits whereas est the first one is the code bit and the second one is the original data bit. The threshold decoder decodes these

kc set of pairs into a data stream appearing at 'Cest' / 'Clkc'. Data will be updated on the negative edge of 'Clkc'. The decoding procedure will be started with a high level at 'Fmatch'. It is also possible to disable the decoding function. If 'Decode' is low the decoder will map 'Best' / 'Clkb' to 'Cest' / 'Clkc' if Fmatch is high.

Fig. 7 shows the block diagram of the Interface. The interface has different functions:

- Communication with a microprocessor (SPI-interface)

- Saving all register values for programming
- Saving incoming data
- Interrupt function

Counting pulses for high input energy detection

Additionally the interface also handles the end of a transmission. The first 4 incoming bits (MSB first) after the low to high transition of 'Fmatch' define the number of bytes the currently transmitted block will have. The interface resets the frame detector exactly after this number of bytes is stored. An interrupt will be generated after completion of transmission (IRQ changes to low) and a request flag is set in the interrupt register.

A counter counts the pulses from the comparator. The upper 8 bit of the 11bit counter can be read by the SPI-interface.

Communication via SPI Interface

Each data transfer is initialized with a 8bit control word:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Cmd2	Cmd1	Cmd0	Adr4	Adr3	Adr2	Adr1	Adr0

Cmd2...Cmd0 represent the command word and define the action. Adr4..Adr0 is the address which will be accessed. The following commands are possible:

Cmd2	Cmd1	Cmd0	Action
0	0	0	Not defined
0	0	1	Read register (address 00 to 07H)
0	1	0	Read YCUML (only for test)
0	1	1	Read YCUMH (only for test)
1	0	0	Read incoming data (address 00 to 11H)
1	0	1	Write register (address 00 to 07H)
1	1	0	Read ZINTL (only for test)
1	1	1	Read ZINTH (only for test)

Each data transfer starts with a command and a corresponding address. Communication is initialized with the falling edge of CS. There is an auto increment function implemented for read and write operation. This means that the command word is necessary only once for consecutive addresses.

The MSB (most significant bit, bit7) has to be set first in write operation and will be present first in read operation. Data at 'Sin' is sampled with the positive edge of 'Sck' whereas Data at 'Sout' will be updated with the negative edge of 'Sck'.

Bus Timing

Write Sequence

Fig.9 shows the read timing. In this case the command word is "read register (address 00H)". The value which is clocked at 'Sout' is AAH.

Fig. 9: Read Sequence

Registers for DMR01 configuration

The system consists of several registers for programming the desired function. All registers will be reset to 0 with 'Res' = '0'.

Control register

Register name:	CNT
Access:	R/W
Description:	Control register for programming the function of the DMR-01

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
Out1	Out0	Br1	Br0	Dec on	Fdet on	Rec on		00H

Description:	Out1,Out0 =	00 : no internal signals available at Pin 'Datout' and Pin 'Clkout' 01 : 'Aest' is mapped to 'Datout', 'Clka' is mapped to 'Clkout' 10 : 'Best' is mapped to 'Datout', 'Clkb' is mapped to 'Clkout' 11 : 'Cest' is mapped to 'Datout', 'Clkc' is mapped to 'Clkout'
	Br1,Br0 =	00 : baud rate is set to 1'024 bit/s 01 : baud rate is set to 2'048 bit/s 10 : baud rate is set to 4'096 bit/s 11 : baud rate is set to 8'192 bit/s
	Dec on =	0 : Decoder is not enabled 1 : Decoder is enabled
	Fdet on =	0 : Frame detector is off 1 : Frame detector is on
	Rec on =	0 : Receiver is off (including input amplifier) 1 : Receiver is on

In order to guarantee proper function 'Rec on' must be set to '0' before any of Bit2 to Bit5 is changed.

Interrupt register

 Register name:
 INT

 Access:
 R/W (write access is only possible for IE)

 Description:
 Interrupt status register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
IRQ				IE				01H

Description:

Ţ

0 : Interrupt capability disabled 1 : Interrupt capability enabled

IE =

0 : Interrupt not requested

IRQ =

1 : Interrupt request after received data

An interrupt request will be reset by 'Res' = '0' or by reading any of the data registers. In this case the positive edge of 'CS' will trigger the clear function. This means that 'CS' must be high to start the receiver again.

Bit Quality level registers

Register name:

Access:

BITQLEVELH (high byte) BITQLEVELL (low byte) R/W

Description:

Bit quality level (energy level which represents good bit quality)

High byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
BQL15	BQL14	BQL13	BQL12	BQL11	BQL10	BQL9	BQL8	02H

Low Byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
BQL7	BQL6	BQL5	BQL4	BQL3	BQL2	BQL1	BQL0	03H

Frame quality level Register

Register name: Access: **Description:**

FRMQLEVEL R/W

Frame quality level (number of bits out of the 12 frame bits which must have an energy level which is higher than programmed in "Bit Quality level register" such that a frame is accepted) and number of matches (number of incoming bits which have to match the frame word) for acceptance.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
NOM3	NOM2	NOM1	NOM0	FQL3	FQL2	FQL1	FQL0	04H

The numbers represented in FQL3..FQL0 and NOM3..NOM0 must be less or equal 12.

Frame registers

Register name:	FRAMEH (high byte)
	FRAMEL (low byte)
Access:	R/W
Description:	High Byte of the frame wor

High byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
-	-	-	-	FRM11	FRM10	FRM9	FRM8	05H

Low byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
FRM7	FRM6	FRM5	FRM4	FRM3	FRM2	FRM1	FRM0	06H

Controlregister for analog part

Register name:	ANACNTRL
Access:	R/W
Description:	Setup of analog part

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
GA1	GA0	BW0	ADR1	ADR0	CPS2	CPS1	CPS0	07H

Description: CPS2,CPS1,CPS0:	This 3 Bits define the reference level of the comparator. "000" is Vdd/2. "111" means Vdd*15/16.
ADR1,ADR0:	00 : Input range for A/D-converter is about +/- 0.4 * Vdd 01 : Input range for A/D-converter is about +/- 0.2 * Vdd 10 : Input range for A/D-converter is about +/- 0.1 * Vdd 11 : Input range for A/D-converter is about +/- 0.05 * Vdd
BW0 =	0 : 8 kHz Input Receiver Bandwidth Mode 1 : 122 kHz Input Receiver Bandwidth Mode
GA1,GA0:	00 : Input amplifier voltage gain is about 2'000 01 : Input amplifier voltage gain is about 1'000 10 : Input amplifier voltage gain is about 500 11 : Input amplifier voltage gain is about 200

Cumulator output registers

YCUMH (high byte) **Register name:** Access: R

Description:

YCUML (low byte)

Output of the cumulator (only for test purposes)

High byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
YCUM15	YCUM14	YCUM13	YCUM12	YCUM11	YCUM10	YCUM9	YCUM8	-

Low byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
YCUM7	YCUM6	YCUM5	YCUM4	YCUM3	YCUM2	YCUM1	YCUM0	-

These 2 registers are read by direct commands (see 5.7).

Statistic output registers

Register n	ame:
------------	------

ZINTH (high byte) ZINTL (low byte)

Access: **Description:** R Statistic of the Bitestimator (only for test purposes)

High byte:

<u> </u>								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
ZINT15	ZINT14	ZINT13	ZINT12	ZINT11	ZINT10	ZINT9	ZINT8	-

Low byte:

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
ZINT7	ZINT6	ZINT5	ZINT4	ZINT3	ZINT2	ZINT1	ZINT0	-

These 2 registers are read by direct commands.

Registers for data receiving

All data registers will be reset to 0 with 'Res' = '0'.

Number of received Bytes

 Register name:
 NOB

 Access:
 R

 Description:
 Number of received bytes - 1 of the last reception. If NOB is zero, then one byte of data was transmitted.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
0	0	0	0	NOB3	NOB2	NOB1	NOB0	00H

Data bytes

Access: **Description:**

Received data. The end address depends on the message length (max. 10H)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
MSB							LSB	01H to 10H

High energy detector

Register name: Access: Description: ECOUNTER R

Number of signal waves at the comparator input with high energy.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
EC10	EC9	EC8	EC7	EC6	EC5	EC4	EC3	*

ECOUNTER represents the number of signal waves at the 'Cmpin' input with a level higher than the reference value. Only every 8th clock is counted (positive edge triggered).

*: The address of this register depends on the length of the received data stream. ECONTER is attached at the end of the message.

ECOUNTER will be reset after reading data.

Received data

Dataformat and Coding

Uncoded: 8 Bit		12 Bit 4 Bit		Max. 128 Bit	0 Bit
	Pre- amble	Frame- word	No.of Bytes	Data max. 16Bytes	Post- amble
Coded:	8 Bit	12 Bit	8 Bit	Max. 256 Bit	12 Bit

Fig. 10: Dataformat

For a proper function of the receiver, the transmitter has to do the correct function. First it is important to note the used dataformat as described in Fig. 8.

Each datastream consists of a 8 bit preamble, a 12 bit frameword, a 4 bit information for the number of transmitted bytes, the data (up to 16 Bytes) and a postamble. A '0000' for the number of bytes means that 1 byte is transmitted. A '1111' means that 16 bytes are transmitted.

For each bit, the transmitter must transmit a number of consecutive sinusoidal waves. This number is 8 for a baud rate of 1kbit/s, 4 for a baud rate of 2 kBit/s, 2 for a baud rate of 4 kbit/s and 1 for baud rate 8 kbit/s. The modulation technique is <u>Differential Binary Phase Shift</u> Keying (DBPSK). Therefore the phase of the sinusoidal waves has to be shifted by 180° if the bit (which actually should be transmitted) is logic high. The phase remains unchanged during transmission of this bit.

If the coding function is used, the information has to be encoded according to a special function (not disclosed at the moment). Note that in case of coded transmissions only the data after the frameword has to be encoded. The postamble is necessary to bring the decoder to it's default state. Preamble and postamble should use an all one sequence('11...11') In case of uncoded transmission the postamble is not necessary.

The encoder must be initialized with '000000' prior to every datastream.

Package Information

TSSOP20

	MIN	NOM	MAX	NOTE				
А			1.10					
A1	0.05		0.15					
A2	0.85	0.90	0.95					
D	6.40	6.50	6.60	3, 8				
E1	4.30	4.40	4.50	4, 8				
Е		6.4 BSC						
е		0.65 BSC						
L	0.50	0.60	0.75					
R	0.09							
R1	0.09							
b	0.19		0.30	5				
b1	0.19	0.22	0.25					
С	0.09		0.20					
c1	0.09		0.16					
θ1	0°		8°					
L1		1.0 REF						
aaa		0.10						
bbb		0.10						
ccc	0.05							
ddd	0.20							
е	0.65 BSC							
θ2	12° REF							
θ 3		12° REF						

4.40 mm Body 0.65 mm Lead Pitch

Note : 1, 2 Issue : A BSC = Basic ...

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 3. DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- 4. DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- 5. DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM FOR 0.5 MM PITCH PACKAGES.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DATUMS AND B TO BE DETERMINED AT DATUM PLANE H -
- 8. DIMENSIONS 'D' ANO 'E1' ARE TO BE DETERMINED AT DATUM PLANE H-
- 9. THIS DIMENSION APPLIES ONLY TO VARIATIONS WITH AN EVEN NUMBER OF LEADS PER SIDE. FOR VARIATION WITH AN ODD NUMBER OF LEADS PER SIDE, THE "CENTER" LEAD MUST BE COINCIDENT WITH THE PACKAGE CENTERLINE,. DATUM A.
- 10. ACROSS SECTION A A TO BE DETERMINED AT 0.10 TO 0.25 MM FROM THE LEADTIP.
- 11. THIS VARIATION IS NOT REGISTERED WITH JEDEC.