Description

The IDTAS4624 low on-resistance (RON), low voltage, single-pole/double-throw (SPDT) analog switch operates from a single +1.8 V to +5.5 V supply. The IDTAS4624 features a 0.5Ω (max) RON for its NC switch and a 0.8Ω (max) RON for its NO switch at a +2.7 V supply. It also features break-before-make switching action (2 ns) with $\mathrm{t}_{\mathrm{ON}}=50 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{OFF}}=40 \mathrm{~ns}$ at +3 V . The digital logic input is 1.8 V logic-compatible with $\mathrm{a}+2.7 \mathrm{~V}$ to +3.3 V supply.

Applications

- Speaker headset switching
- MP3 players
- Battery-operated equipment
- Audio and video signal routing
- PCMCIA cards
- Cellular phones
- Modems

Features

- +1.8 V to +5.5 V single-supply operation
- Rail-to-rail signal handling
- 1.8 V logic compatibility
- Ron match between channels: 0.06Ω (max)
- Ron flatness over signal range: 0.15Ω (max)
- NCx Switch Ron: 0.5Ω max (+2.7 V Supply) (ICSAS4684)
- NOx Switch Ron: 0.8Ω max (+2.7 V Supply)
- Low crosstalk: -68dB (100 kHz)
- High Off-isolation: -64dB (100 kHz)
- THD: 0.03\%
- 50 nA (max) supply current
- Low leakage currents: 1 nA (max) at $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
- 6-pin SOT-23 package

Block Diagram

Pin Assignment (SOT-23)

Truth Table

IN1	NO1	NC1
0	ON	OFF
1	OFF	ON

Note: Switches shown for logic "0" input.

Pin Descriptions

Pin Numbers	Pin Name	Pin Description
4	NC	Analog switch. Normally closed terminal.
1	IN	Digital control input.
5	COM1	Analog switch. Common terminal 1.
6	NO	Analog switch. Normally open terminal.
2	V+	Positive supply voltage input.
3	GND	Ground.

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDTAS4624. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. All voltages referenced to ground.

Symbol	Rating	Min	Max	Unit
V+, IN		-0.3	+6	V
COM, NO, NC		-0.3	(V++0.3)	V
NO, NC, COM	Continuous current		± 300	mA
	Peak current (pulsed at $1 \mathrm{~ms}, 50 \%$ duty cycle)		± 400	
	Peak current (pulsed at 1ms, 10\% duty cycle)		± 500	
	Continuous power dissipation ($\mathrm{TA}=+70^{\circ} \mathrm{C}$) and 12-bump UCSP (derate $11.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)		+909	mW
	Operating temperature range	0	+70	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	+150	${ }^{\circ} \mathrm{C}$
	Lead temperature (soldering, 10s)		+300	${ }^{\circ} \mathrm{C}$
	Bump temperature (soldering, infrared, 15s)		+200	${ }^{\circ} \mathrm{C}$
	Vapor phase (60s)		+215	${ }^{\circ} \mathrm{C}$

Electrical Characteristics, +3 V Supply (notes 1, 2)

Unless stated otherwise, $\mathrm{V}+=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=\mathbf{0 . 5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at +3 V and $25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	$\mathbf{T}_{\mathbf{A}}$	Min.	Typ.	Max.	Units
Analog Switch							
Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{COM}}$		$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	0		V+	V
NC On-Resistance	$\mathrm{R}_{\mathrm{ON}(\mathrm{NC})}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+\text {; Note } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		3.0	0.5	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.5	
NO On-Resistance	$\mathrm{R}_{\mathrm{ON}(\mathrm{NO})}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+; \text { Note } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.45	0.8	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.8	
On-Resistance Match between channels	$\triangle \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \text {; Notes } 3,4 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0	0.6	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.6	
NC On-Resistance Flatness	$\mathrm{R}_{\text {FLAT(NC) }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NC}}=0 \text { to } \mathrm{V}+\text {; Note } 5 \end{aligned}$	$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.15	Ω
NO On-Resistance Flatness	$\mathrm{R}_{\text {FLAT(NO) }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}+\text {; Note } 5 \end{aligned}$	$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.35	Ω
NO or NC Off-leakage Current	I_{NO} (OFF) or I_{NC} (OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1		+1	nA
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	-10		+10	
COM On-leakage Current	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, 0.3$ V , or floating $\mathrm{V}_{\text {COM }}=0.3 \mathrm{~V}$, 3 V , or floating	$+25^{\circ} \mathrm{C}$	-2		+2	nA
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	-20		+20	
Dynamic Characteristics							
Turn-on Time	t_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		30	50	ns
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			60	ns
Turn-off Time	$t_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$		25	30	ns
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			40	ns
Break-Before-Make-Delay	$\mathrm{t}_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	2	15		ns
Charge Injection	Q	$C O M=0, R S=0, C_{L}=1 \mathrm{nF}$	$+25^{\circ} \mathrm{C}$		200		pC
Off-Isolation	$\mathrm{V}_{\text {ISO }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{RMS}}, \text { Note } 6 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-64		dB
Crosstalk	V_{CT}	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$	$+25^{\circ} \mathrm{C}$		-68		dB
Total Harmonic Distortion	THD	$\begin{aligned} & R_{L}=600 \Omega, I N=2 V \mathrm{p}-\mathrm{p}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.03		\%
NC Off-Capacitance	C_{NC} (OFF)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		84		pF
NC Off-Capacitance	C_{NO} (OFF)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		37		pF
NC On-Capacitance	C_{NC} (ON)	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		190		pF
NC On-Capacitance	$\mathrm{C}_{\mathrm{NO}}(\mathrm{ON})$	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		150		pF

Parameter	Symbol	Conditions	$\mathrm{T}_{\mathbf{A}}$	Min.	Typ.	Max.	Units
Digital I/O							
Input Logic HIGH	V_{IH}		$\mathrm{T}_{\text {MIN to }}$ $\mathrm{T}_{\text {MAX }}$	1.4			V
Input Logic LOW	VIL		$\mathrm{T}_{\text {MIN to }}$ $\mathrm{T}_{\mathrm{MAX}}$			0.5	V
IN Input Leakage Current	$\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$	$\mathrm{T}_{\text {MIN to }}$ $\mathrm{T}_{\text {MAX }}$	-1		1	$\mu \mathrm{A}$
Power Supply							
Power Supply Range	V+		$\mathrm{T}_{\text {MIN to }}$ $\mathrm{T}_{\text {MAX }}$	1.8		5.5	V
Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+\text {, }$ Note 3	$+25^{\circ} \mathrm{C}$	-50	+0.04	+50	nA
			$\mathrm{T}_{\text {MIN to }}$ $\mathrm{T}_{\text {MAX }}$	-200		+200	

Notes:

1. The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value a maximum.
2. UCSP parts are 100% tested at $+25^{\circ} \mathrm{C}$ only and guaranteed by design and correlation at the full hot-rated temperature.
3. Guaranteed by design.
4. $\triangle R_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$, between NC1 and NC2 or between NO1 and NO2.
5. Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal ranges.
6. Off-isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{CO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{CO}}=$ input to off switch.

Electrical Characteristics, +5 V Supply (Note 1)

Unless stated otherwise, $\mathrm{V}+=\mathbf{5} \mathrm{V} \pm \mathbf{1 0 \%}$, $\mathrm{GND}=\mathbf{0}, \mathrm{V}_{\mathrm{IH}}=+\mathbf{2 . 4} \mathrm{V}, \mathrm{V}_{\mathrm{IL}}=+\mathbf{+ 0 . 8} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$. Typical values are at +3 V and $+25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	$\mathrm{T}_{\mathbf{A}}$	Min.	Typ.	Max.	Units
Analog Switch							
Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{COM}}$			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.65	1	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			1.2	
On-Resistance Match between channels	$\triangle \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=3.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.12	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.15	
On-Resistance Flatness	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V} \text {, Note } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.8	0.12	Ω
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			0.15	
NO or NC Off-leakage Current	I_{NO} (OFF) or I_{NC} (OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	0.01	+2	nA
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	-20		+20	
COM On-leakage Current	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V} \text {, or floating } \\ & \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-4	0.3	+4	nA
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	-40		+40	
Overcurrent-Protection Current Threshold		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1.2		A
Dynamic Characteristics							
Turn-on Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		40	50	ns
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			60	
Turn-off Time	$t_{\text {OFF }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$		40	50	ns
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$			60	
Break-Before-Make-Delay	$\mathrm{t}_{\text {BBM }}$	Note 4	$+25^{\circ} \mathrm{C}$	1	20		ns
			$\mathrm{T}_{\text {MIN to }} \mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\mathrm{V}_{\mathrm{GEN}}=0, \mathrm{R}_{\mathrm{GEN}}=0, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	$+25^{\circ} \mathrm{C}$		200		pC
Off-Isolation	$\mathrm{O}_{\text {IRR }}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		-64		dB
Crosstalk	V_{CT}	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz},$ Note 5	$+25^{\circ} \mathrm{C}$		-68		dB
NC or NO Off-Capacitance	$\mathrm{C}_{\text {OFF }}$	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		37		pF
COM On-Capacitance	$\mathrm{C}_{\mathrm{COM}}(\mathrm{ON})$	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$		190		pF

Parameter	Symbol	Conditions	$\mathrm{T}_{\text {A }}$	Min.	Typ.	Max.	Units
Logic Input							
Input Voltage HIGH	$\mathrm{V}_{\text {INH }}$			2.4			V
Input Voltage LOW	$\mathrm{V}_{\text {INL }}$					0.8	V
Logic Input Current	I_{IN}			-1		+1	$\mu \mathrm{A}$
Power Supply							
Power Supply Range	V+			1.8		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or $\mathrm{V}+$				10	nA

Notes:

1. The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value a maximum.
2. Guaranteed by design.
3. $\triangle R_{O N}=R_{O N(M A X)}-R_{O N(M I N)}$, between NC1 and NC2 or between NO1 and NO2.
4. Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal ranges.
5. Off-isolation $=20 \log 10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{CO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{CO}}=$ input to off switch.

Test Circuits and Timing Diagrams

Overvoltage Protection Using Two External Blocking Diodes

Switching Time

Break-Before-Make Interval

Charge Injection

On-Loss, Off-Isolation, and Crosstalk

Channel Off/On Capacitance

Marking Diagram (SOT-23)

Notes:

1. " Z " is the device step (1 to 2 characters).
2. YYWW is the last two digits of the year and week that the part was assembled.
3. " $\$$ " is the assembly mark code.
4. "G" after the two-letter package code designates RoHS compliant package.
5. "I" at the end of part number indicates industrial temperature range.
6. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (SOT-23-6)

Package dimensions are kept current with JESD Publication No. 95-1,

Ordering Information

Revision History

Rev.	Originator	Date	Description of Change
B		$6 / 12 / 07$	Created datasheet in new template; added marking diagram.

For Sales
800-345-7015
408-284-8200
Fax: 408-284-2775

For Tech Support
408-284-4522
www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

