16-bit Microcontroller

CMOS

F²MC-16LX MB90480B/485B Series

MB90F481B/F482B/487B/488B/483C MB90F488B/F489B/V480B/V485B

DESCRIPTION

The MB90480B/485B series is a 16-bit general-purpose FUJITSU MICROELECTRONICS microcontroller designed for process control in consumer devices and other applications requiring high-speed real-time processing.

The F²MC-16LX CPU core instruction set retains the AT architecture of the F²MC*¹ family, with additional instructions for high-level languages, expanded addressing mode, enhanced multiply-drive instructions, and complete bit processing. In addition, a 32-bit accumulator is provided to enable long-word processing.

The MB90480B/485B series features embedded peripheral resources including 8/16-bit PPG, expanded I/O serial interface, UART, 10-bit A/D converter, 16-bit I/O timer, 8/16-bit up/down-counter, PWC timer, I²C*² interface, DTP/ external interrupt, chip select, and 16-bit reload timer.

- *1: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.
- *2 : Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C standard a Specification as defined by Philips.

■ FEATURES

Clock

Minimum instruction execution time: 40.0 ns/6.25 MHz base frequency multiplied $\times 4$ (25 MHz internal operating frequency/3.3 V \pm 0.3 V)

62.5 ns/4 MHz base frequency multiplied \times 4 (16 MHz internal operating frequency/3.0 V \pm 0.3 V) PLL clock multiplier

Maximum memory space: 16 Mbytes

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page URL: http://edevice.fujitsu.com/micom/en-support/

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

Instruction set optimized for controller applications

Supported data types (bit, byte, word, or long word)

Typical addressing modes (23 types)

32-bit accumulator for enhanced high-precision calculation

Enhanced signed multiplication/division instruction and RETI instruction functions

 Instruction set designed for high-level programming language (C) and multi-task operations System stack pointer adopted

Instruction set symmetry and barrel shift instructions

- Non-multiplex bus/multiplex bus compatible
- Enhanced execution speed
 - 4-byte instruction queue
- Enhanced interrupt functions

8 levels setting with programmable priority, 8 external interrupts

Data transfer function (μDMAC)

Up to 16 channels

• Embedded ROM

Flash versions: 192 Kbytes, 256 Kbytes, 384 Kbytes, MASK versions: 192 Kbytes, 256 Kbytes

Embedded RAM

Flash versions: 4 Kbytes, 6 Kbytes, 10 Kbytes, 24 Kbytes, MASK versions: 10 Kbytes, 16 Kbytes

General purpose ports

Up to 84 ports

(Includes 16 ports with input pull-up resistance settings, 16 ports with output open-drain settings)

A/D converter

8-channel RC sequential comparison type (10-bit resolution, 3.68 μs conversion time (at 25 MHz))

• I²C interface (MB90485B series only): 1channel, P76/P77 N-ch open drain pin (without P-ch)

Do not apply high voltage in excess of recommended operating ranges to the N-ch open drain pin (with P-ch) in MB90V485B.

- μPG (MB90485B series only) : 1 channel
- UART: 1 channel
- Extended I/O serial interface (SIO): 2 channels
- 8/16-bit PPG: 3 channels (with 8-bit × 6 channel/16-bit × 3 channel mode switching function)
- 8/16-bit up/down counter/timer: 1 channel (with 8-bit × 2 channels/16-bit × 1-channel mode switching function)
- PWC (MB90485B series only): 3 channels (Capable of compare the inputs to two of the three)
- 3 V/5 V I/F pin (MB90485B series only)

P20 to P27, P30 to P37, P40 to P47, P70 to P77

- 16-bit reload timer: 1 channel
- 16-bit I/O timer: 2 channels input capture, 6 channels output compare, 1 channel free-run timer
- · On chip dual clock generator system
- Low-power consumption mode

With stop mode, sleep mode, CPU intermittent operation mode, watch mode, timebase timer mode

- Packages : QFP 100/LQFP 100
- Process : CMOS technology
- Power supply voltage: 3 V, single power supply (some ports can be operated by 5 V power supply at MB90485B series)

■ PRODUCT LINEUP

• MB90480B series

Item	Part number	MB90F481B	MB90F482B	MB90V480B			
Classification	on	Flash memo	Evaluation product				
ROM size		192 Kbytes	256 Kbytes	_			
RAM size		4 Kbytes	6 Kbytes	16 Kbytes			
CPU function	on	Number of instructions : 351 Instruction bit length : 8-bit, 16-bit Instruction length : 1 byte to 7 bytes Data bit length : 1-bit, 8-bit, 16-bit Minimum instruction execution time : 40 ns (25 MHz machine clock)					
Ports		General-purpose I/O port General-purpose I/O port General-purpose I/O port General-purpose I/O port	s (CMOS output) s (with pull-up resistance s (N-ch open drain outpu				
UART		1 channel, start-stop synd	chronized				
8/16-bit PP	'G	8-bit × 6 channels/16-bit	× 3 channels				
8/16-bit up/		Event input pins : 6, 8-bit					
counter/tim		8-bit reload/compare regi	sters : 2				
	16-bit free-run timer	Number of channels : 1 Overflow interrupt					
16-bit I/O timers	Output compare (OCU)	Number of channels : 6 Pin input factor : A match signal of compare register					
	Input capture (ICU)	Number of channels : 2 Rewriting a register value upon a pin input (rising, falling, or both edges)					
DTP/extern	nal interrupt circuit	Number of external interrupt pin channels : 8 (edge or level detection)					
Extended I	O serial interface	Embedded 2 channels					
Timebase t	timer	18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator)					
A/D converter		Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)					
Watchdog	timer	Reset generation interval : 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator)					
Low-power (standby) n	consumption nodes	Stop mode, sleep mode, CPU intermittent operation mode, watch mode, timebase timer mode					
Process		CMOS					
Туре		Not included security function User pin*1, 3 V/5 V versions					
Emulator p	ower supply*2	_		Included			

^{*1:} User pin: P20 to P27, P30 to P37, P40 to P47, P70 to P77

Note : Ensure that you must write to Flash at $Vcc = 3.13 \ V$ to $3.60 \ V$ $(3.3 \ V + 10\%, -5\%)$.

^{*2:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.

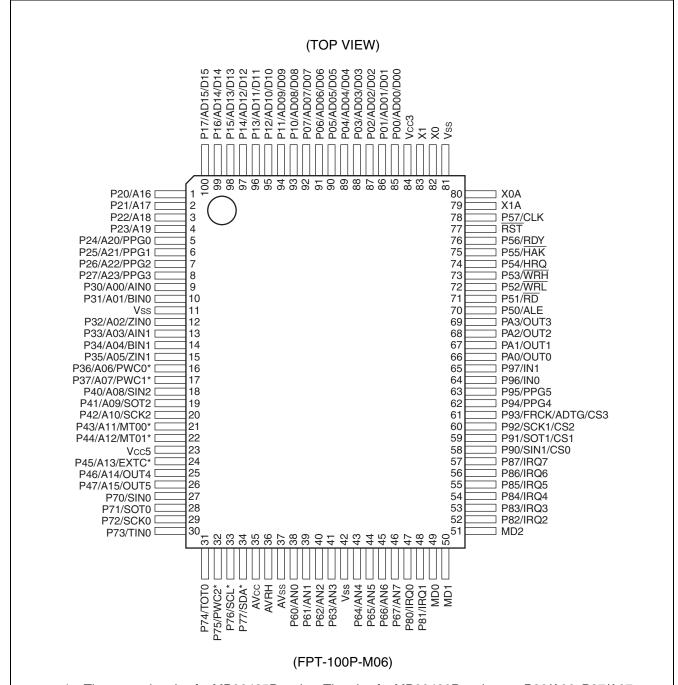
• MB90485B series

	Part number								
Item		MB90487B	MB90488B	MB90F488B	MB90V485B	MB90F489B	MB90483C		
Classific	ation	MASK ROM product		Flash memory product	Evaluation product	Flash memory product	MASK ROM product		
ROM siz	:e	192 Kbytes	256 Kbytes	256 Kbytes	_	384 Kbytes	256 Kbytes		
RAM siz	е	10 Kbytes	10 Kbytes	10 Kbytes	16 Kbytes	24 Kbytes	16 Kbytes		
CPU fun	ction	Number of instructions : 351 Instruction bit length : 8-bit, 16-bit Instruction length : 1 byte to 7 bytes Data bit length : 1-bit, 8-bit, 16-bit Minimum instruction execution time : 40 ns (25 MHz machine clock)							
Ports		General-purp General-purp	ose I/O ports (up to 84 (CMOS output) with pull-up res N-ch open dra	sistance)				
UART		1 channel, sta	art-stop synchi	ronized					
8/16-bit	PPG	8-bit × 6 chan	nels/16-bit $ imes$ 3	3 channels					
8/16-bit counter/		Event input pins : 6, 8-bit up/down counters : 2 8-bit reload/compare registers : 2							
	16-bit free-run timer	Number of ch Overflow inte							
16-bit I/O timers	Output compare (OCU)	Number of channels : 6 Pin input factor: A match signal of compare register							
	Input capture (ICU)	Number of ch Rewriting a re		pon a pin input	(rising, falling,	or both edges)		
DTP/exto	ernal interrupt	Number of external interrupt pin channels: 8 (edge or level detection)							
Extende interface	d I/O serial	Embedded 2 channels							
I ² C interl	ace*2	1 channel							
μPG		1 channel							
PWC		3 channels							
Timebase timer		18-bit counter Interrupt cycles: 1.0 ms, 4.1 ms, 16.4 ms, 131.1 ms (at 4 MHz base oscillator)							
A/D conv	verter	Conversion resolution: 8/10-bit, switchable One-shot conversion mode (converts selected channel 1 time only) Scan conversion mode (conversion of multiple consecutive channels, programmable up to 8 channels) Continuous conversion mode (repeated conversion of selected channels) Stop conversion mode (conversion of selected channels with repeated pause)							

(Continued)

Part number Item	MB90487B	MB90488B	MB90F488B	MB90V485B	MB90F489B	MB90483C
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (minimum value, at 4 MHz base oscillator)					
Low-power consumption (standby) modes	Stop mode, sleep mode, CPU intermittent operation mode, watch timer mode, timebase timer mode					
Process	CMOS					
Туре	3 V/5 V power supply*1	3 V/5 V power supply*1	3 V/5 V power supply*1 Included security function	3 V/5 V power supply*1	3 V/5 V power supply*1 Included security function	3 V/5 V power supply*1
Emulator power supply*3	_	_	_	Included	_	_

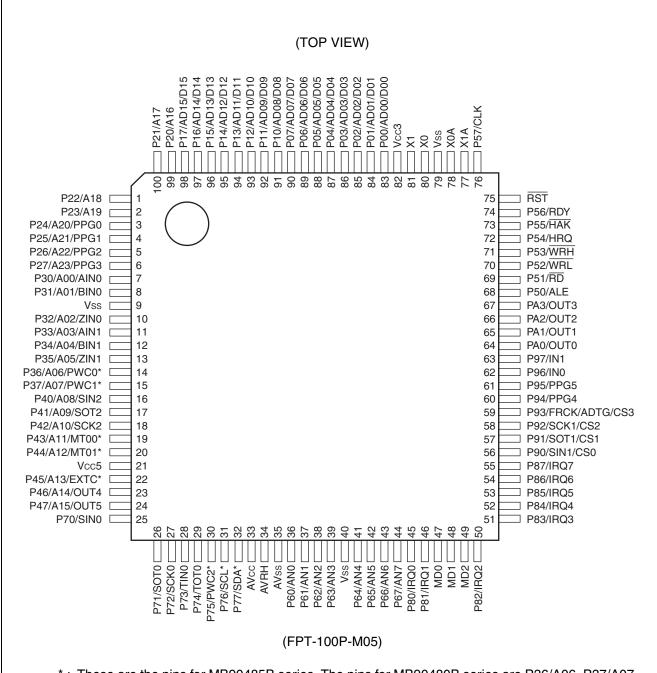
^{*1: 3} V/5 V I/F pin: All pins should be for 3 V power supply without P20 to P27, P30 to P37, P40 to P47, and P70 to P77.


Notes: • As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/μPG/I²C become CMOS input.

• Ensure that you must write to Flash at Vcc = 3.13 V to 3.60 V (3.3 V + 10%, -5%).

^{*2:} P76/P77 pins are N-ch open drain pins (without P-ch) at built-in I²C. However, MB90V485B uses the N-ch open drain pin (with P-ch).

^{*3:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used.
Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.


■ PIN ASSIGNMENT

*: These are the pins for MB90485B series. The pins for MB90480B series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485B series only

- I²C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/μPG/I²C become CMOS input.

*: These are the pins for MB90485B series. The pins for MB90480B series are P36/A06, P37/A07, P43/A11, P44/A12, P45/A13, P75 to P77.

Note: MB90485B series only

- I²C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ μPG/I²C become CMOS input.

■ PIN DESCRIPTIONS

Pin	No.		I/O	
QFP*1	LQFP*2	Pin name	circuit type*3	Function
82	80	X0	Α	Clock (oscillator) input pin
83	81	X1	Α	Clock (oscillator) output pin
80	78	X0A	Α	Clock (32 kHz oscillator) input pin
79	77	X1A	А	Clock (32 kHz oscillator) output pin
77	75	RST	В	Reset input pin
		P00 to P07		This is a general purpose I/O port. A setting in the port 0 input resistance register (RDR0) can be used to apply pull-up resistance (RD00-RD07 = "1") . (Disabled when pin is set for output.)
85 to 92	83 to 90	AD00 to AD07	C (CMOS)	In multiplex mode, these pins function as the external address/data bus low I/O pins.
		D00 to D07		In non-multiplex mode, these pins function as the external data bus low output pins.
		P10 to P17	_	This is a general purpose I/O port. A setting in the port 1 input resistance register (RDR1) can be used to apply pull-up resistance (RD10-RD17 = "1") . (Disabled when pin is set for output.)
93 to 100	91 to 98	AD08 to AD15	C (CMOS)	In multiplex mode, these pins function as the external address/data bus high I/O pins.
		D08 to D15		In non-multiplex mode, these pins function as the external data bus high output pins.
		P20 to P23		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
1 to 4	99,100, 1,2	A16 to A19	E (CMOS/H)	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins (A16 to A19). When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins (A16 to A19).
		P24 to P27		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
5 to 8	3 to 6	A20 to A23	E (CMOS/H)	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins (A20 to A23). When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins (A20 to A23).
		PPG0 to PPG3		Output pins for PPG.
		P30	-	This is a general purpose I/O port.
9	7	A00	E (CMOS/H)	In non-multiplex mode, this pin functions as an external address pin.
		AIN0		8/16-bit up/down timer input pin (ch.0) .

Pin	No.	Pin	I/O				
QFP*1	LQFP*2	name	circuit type*3	Function			
		P31		This is a ge	eneral purpose I/O port.		
10	10 8	A01	E (CMOS/H)	In non-mul	In non-multiplex mode, this pin functions as an external address pin.		
		BIN0	(010100/11)	8/16-bit up	down timer input pin (ch.0) .		
		P32	_	This is a ge	eneral purpose I/O port.		
12	10	A02	E (CMOS/H)	In non-mul	tiplex mode, this pin functions as an external address pin.		
		ZIN0	(01/100/11)	8/16-bit up	down timer input pin (ch.0)		
		P33	_	This is a ge	eneral purpose I/O port.		
13	11	A03	E (CMOS/H)	In non-mul	tiplex mode, this pin functions as an external address pin.		
		AIN1	(01/100/11)	8/16-bit up	down timer input pin (ch.1) .		
		P34	_	This is a ge	eneral purpose I/O port.		
14	12	A04	E (CMOS/H)	In non-mul	tiplex mode, this pin functions as an external address pin.		
		BIN1	(01/100/11)	8/16-bit up	down timer input pin (ch.1) .		
		P35	_	This is a ge	eneral purpose I/O port.		
15	13	A05	E (CMOS/H)	In non-mul	In non-multiplex mode, this pin functions as an external address pin.		
		ZIN1	(01/100/11)	8/16-bit up	down timer input pin (ch.1)		
		P36, P37	1	MB90480B series	This is a general purpose I/O port.		
		A06, A07	D (CMOS)		In non-multiplex mode, these pins function as external address pins.		
16, 17	14, 15	P36, P37			This is a general purpose I/O port.		
, , , ,	,	A06, A07	E (CMOS/H)	MB90485B series	In non-multiplex mode, these pins function as external address pins.		
		PWC0, PWC1*4	(000,1.1)		PWC input pins		
		P40		This is a ge	eneral purpose I/O port.		
18	16	A08	G (CMOS/H)	In non-mul	tiplex mode, this pin functions as an external address pin.		
		SIN2	(01/10/0/11)	Extended I/O serial interface input pin.			
		P41		This is a general purpose I/O port.			
19	17	A09	F(CMOS)	In non-multiplex mode, this pin functions as an external address pin.			
		SOT2		Extended I/O serial interface output pin.			
		P42		This is a ge	eneral purpose I/O port.		
20	18	A10	G (CMOS/H)	In non-mul	tiplex mode, this pin functions as an external address pin.		
		SCK2	(333,11)	Extended I	/O serial interface clock input/output pin.		

Pin	No.		I/O				
QFP*1	LQFP*2	Pin name	circuit type*3	Function			
		P43, P44		MDOOMOOD	This is a general purpose I/O port.		
		A11, A12	F(CMOS)	MB90480B series	In non-multiplex mode, these pins function as external address pins.		
21, 22	19, 20	P43, P44			This is a general purpose I/O port.		
,	,	A11, A12	F(CMOS)	MB90485B series	In non-multiplex mode, these pins function as external address pins.		
		MT00, MT01			μPG output pins		
		P45	F	MB90480B	This is a general purpose I/O port.		
		A13	(CMOS)	series	In non-multiplex mode, this pin functions as an external address pin.		
24	22	P45			This is a general purpose I/O port.		
		A13	G (CMOS/H)	MB90485B series	In non-multiplex mode, this pin functions as an external address pin.		
		EXTC*4			μPG input pin.		
		P46, P47		This is a ge	eneral purpose I/O port.		
25, 26	23, 24	A14, A15	F	In non-mul	tiplex mode, these pins function as external address pins.		
	·	OUT4, OUT5	(CMOS)	Output con	Output compare event output pins.		
70	68	P50	D	This is a general purpose I/O port. In external bus mode, this pin functions as the ALE pin.			
70	00	ALE	(CMOS)	In external bus mode, this pin functions as the address load enable (ALE) signal pin.			
71	60	P51	D		eneral <u>pu</u> rpose I/O port. In external bus mode, this pin s the RD pin.		
/ 1	69	RD	(CMOS)	In external bus mode, this pin functions as the read strobe output (\overline{RD}) signal pin.			
		P52	Б		eneral purpose I/O port. In external bus mode, when the WRE PCR register is set to "1", this pin functions as the WRL pin.		
72	70	WRL	(CMOS)	In external bus mode, this pin functions as the lower data write output (WRL) pin. When the WRE bit in the EPCR register is s this pin functions as a general purpose I/O port.			
		P53	D	width, whe	eneral purpose I/O port. In external bus mode with 16-bit bus in the WRE bit in the EPCR register is set to "1", this pin is the WRH pin.		
73	71	(CMOS)		In external bus mode with 16-bit bus width, this pin functions as the upper data write strobe output (WRH) pin. When the WRE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.			

Pin	No.		I/O	
QFP*1	LQFP*2	Pin name	circuit type*3	Function
74	72	P54	D	This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to "1", this pin functions as the HRQ pin.
74	72	HRQ	(CMOS)	In external bus mode, this pin functions as the hold request input (HRQ) pin. When the HDE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
75	73	P55	D	This is a general purpose I/O port. In external bus mode, when the HDE bit in the EPCR register is set to "1", this pin functions as the HAK pin.
75	73	HAK	(CMOS)	In external bus mode, this pin functions as the hold acknowledge output (HAK) pin. When the HDE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
76	74	P56	D	This is a general purpose I/O port. In external bus mode, when the RYE bit in the EPCR register is set to "1", this pin functions as the RDY pin.
76	74	RDY	(CMOS)	In external bus mode, this pin functions as the external ready (RDY) input pin. When the RYE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
78	76	P57	D	This is a general purpose I/O port. In external bus mode, when the CKE bit in the EPCR register is set to "1", this pin functions as the CLK pin.
76	76	CLK	(CMOS)	In external bus mode, this pin functions as the machine cycle clock (CLK) output pin. When the CKE bit in the EPCR register is set to "0", this pin functions as a general purpose I/O port.
38 to 41	36 to 39	P60 to P63	Н	These are general purpose I/O ports.
30 10 41	30 10 39	AN0 to AN3	(CMOS)	These are the analog input pins for A/D converter.
43 to 46	41 to 44	P64 to P67	Н	These are general purpose I/O ports.
43 10 40	41 10 44	AN4 to AN7	(CMOS)	These are the analog input pins for A/D converter.
27	25	P70	G	This is a general purpose I/O port.
	20	SIN0	(CMOS/H)	This is the UART serial data input pin.
28	26	P71	F	This is a general purpose I/O port.
	20	SOT0	(CMOS)	This is the UART serial data output pin.
29	27	P72	G	This is a general purpose I/O port.
20 27		SCK0	(CMOS/H)	This is the UART serial communication clock I/O pin.
30	28	P73	G	This is a general purpose I/O port.
		TIN0	(CMOS/H)	This is the 16-bit reload timer event input pin.
31	29	P74	F	This is a general purpose I/O port.
		TOT0	(CMOS)	This is the 16-bit reload timer output pin.

P75	Pin	No.		I/O			
1	QFP*1	LQFP*2	Pin name	circuit type*3	Function		
P/S PWC2*4 PRO P			P75			This is a general purpose I/O port.	
PWC2*4	32	30	P75	G	MB90485B	This is a general purpose I/O port.	
33 31 P76 (CMOS) series This is a general purpose I/O port. P76 SCL*4 (NMOS/H) Series This is a general purpose I/O port.			PWC2*4	(CMOS/H)		This is a PWC input pin.	
SCL*4 (NMOS/H) MB90485B Series as the I*C interface, leave the port output in a high impedance state.			P76			This is a general purpose I/O port.	
SCL*4 NMOS/H) Series Serves as the PC interface data I/O pin. During oper attion of the PC interface, leave the port output in a high impedance state. P77	33	31	P76			This is a general purpose I/O port.	
P77 C(MOS) Series This is a general purpose I/O port.		01	SCL*4	(NMOS/H)			
SDA*4 SDA*4 SDA*4 SDA*4 SDA*4 SERVES as the I*C interface data I/O pin. During operation of the I*C interface, leave the port output in a high impedance state. These are general purpose I/O ports. External interrupt input pins. These are general purpose I/O ports. External interrupt input pins. These are general purpose I/O ports. External interrupt input pins. This is a general purpose I/O port. Extended I/O serial interface data input pin. Chip select 0. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 2. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 2. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.			P77			This is a general purpose I/O port.	
SDA*4 SD	34	32	P77			This is a general purpose I/O port.	
A7, 48	04	02	SDA*4	(NMOS/H)			
Section Sect	47.40	4F 4G	P80, P81	Е	These are	general purpose I/O ports.	
Solition Factor	47, 40	45, 46	IRQ0, IRQ1	(CMOS/H)	External int	terrupt input pins.	
Section Sect	50 to 57	50 to 55	P82 to P87	E	These are	general purpose I/O ports.	
58 56 SIN1 (CMOS/H) CS0 Extended I/O serial interface data input pin. Chip select 0. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the externa clock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.	52 10 57	50 10 55	IRQ2 to IRQ7	(CMOS/H)	External int	terrupt input pins.	
SINT (CMOS/H) CS0 Chip select 0. Chip select 0. This is a general purpose I/O port. Extended I/O serial interface data output pin. CS1 FP1 CS1 FP2 FRCK ADTG ADTG CMOS/H) CS0 Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external clock input pin. Chip select 3. This is a general purpose I/O port.			P90	_	This is a ge	eneral purpose I/O port.	
CS0 Chip select 0. P91 This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. P92 This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external trigger input pin. Chip select 3. P94 D This is a general purpose I/O port. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port. This is a general purpose I/O port. This is a general purpose I/O port.	58	56	SIN1		Extended I	O serial interface data input pin.	
59 57 SOT1 CS1 P92 CS2 FRCK ADTG ADTG CS3 CMOS/H) CS3 CMOS/H) CS4 CMOS/H) CS5 Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the externa clock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.			CS0	(=:::-,	Chip select 0.		
SOT1 CS1 CS1 CS1 CS1 Chip select 1. This is a general purpose I/O port. Extended I/O serial interface data output pin. Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. CS2 Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the externa clock input pin. CS3 When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.			P91	_	This is a ge	eneral purpose I/O port.	
CS1 P92 FRCK ADTG ADTG CS1 Chip select 1. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. Extended I/O serial interface clock input/output pin. Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external clock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.	59	57	SOT1	_	Extended I	/O serial interface data output pin.	
60 58 SCK1 (CMOS/H) Extended I/O serial interface clock input/output pin. CS2 Chip select 2. P93 This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external clock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. CS3 Chip select 3. P94 D This is a general purpose I/O port. This is a general purpose I/O port.			CS1	(555)	Chip select	1.	
60 SS SCKT (CMOS/H) CS2 Chip select 2. P93 This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the externa clock input pin. CMOS/H) When the A/D converter is in use, this pin functions as the external trigger input pin. CS3 Chip select 2. When the free-run timer is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.			P92	_	This is a ge	eneral purpose I/O port.	
CS2 Chip select 2. P93 FRCK ADTG CMOS/H) CS3 Chip select 2. This is a general purpose I/O port. When the free-run timer is in use, this pin functions as the external clock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.	60	58	SCK1		Extended I/O serial interface clock input/output pin.		
FRCK ADTG CS3 FRCK E (CMOS/H) When the free-run timer is in use, this pin functions as the externaclock input pin. When the A/D converter is in use, this pin functions as the external trigger input pin. Chip select 3. This is a general purpose I/O port.			CS2	(0.11.00/11)	Chip select 2.		
61 59 ADTG (CMOS/H) E (CMOS/H) When the A/D converter is in use, this pin functions as the external trigger input pin. CS3 Chip select 3. P94 D This is a general purpose I/O port.			P93		This is a general purpose I/O port.		
ADTG ADTG When the A/D converter is in use, this pin functions as the exter nal trigger input pin. CS3 Chip select 3. P94 D This is a general purpose I/O port.	61	50	FRCK	E			
62 60 P94 D This is a general purpose I/O port.	01) 5 9	ADTG	(CMOS/H)	When the A/D converter is in use, this pin functions as the external trigger input pin.		
62 60 (2002)			CS3		Chip select 3.		
PPG4 (CMOS) PPG timer output pin.	62	60	P94		This is a ge	eneral purpose I/O port.	
	02		PPG4	(CMOS)	PPG timer	output pin.	

(Continued)

Pin No.						
QFP*1	LQFP*2	Pin name	circuit type*3	Function		
63	61	P95	D	This is a ge	eneral purpose I/O port.	
03	01	PPG5	(CMOS)	PPG timer	output pin.	
64	62	P96	E	This is a ge	eneral purpose I/O port.	
04	02	IN0	(CMOS/H)	Input captu	ure ch.0 trigger input pin.	
65	63	P97	E	This is a ge	eneral purpose I/O port.	
05	03	IN1	(CMOS/H)	Input captu	re ch.1 trigger input pin.	
66 to 69	64 to 67	PA0 to PA3	D	These are	general purpose I/O ports.	
00 10 09	64 10 67	OUT0 to OUT3	(CMOS)	Output con	Output compare event output pins.	
35	33	AVcc	_	A/D conve	rter analog power supply input pin.	
36	34	AVRH	_	A/D conve	rter reference voltage input pin.	
37	35	AVss	_	A/D conve	rter GND pin.	
49 to 51	47 to 49	MD0 to MD2	J (CMOS/H)	Operating	mode selection input pins.	
84	82	Vcc3	_	3.3 V ± 0.3	³ V power supply pins (Vcc3) .	
				MB90480B series	3.3 V \pm 0.3 V power supply pin. Usually, use Vcc = Vcc3 = Vcc5 as a 3 V power supply.	
23	21	Vcc5	_	MB90485B series	3 V/5 V power supply pin. 5 V power supply pin when P20 to P27, P30 to P37, P40 to P47, P70 to P77 are used as 5 V I/F pins. Usually, use $Vcc = Vcc3 = Vcc5$ as a 3 V power supply (when the 3 V power supply is used alone).	
11, 42, 81	9, 40, 79	Vss		GND pins.		

*1:QFP:FPT-100P-M06

*2: LQFP: FPT-100P-M05

*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPES".

*4 : As for MB90V485B, input pins become CMOS input.

■ I/O CIRCUIT TYPES

Туре	Circuit	Remarks
А	X1, X1A X0, X0A Standby control signal	 Feedback resistance X1, X0 : approx. 1 MΩ X1A, X0A : approx. 10 MΩ With standby control
В	Hysteresis input	Hysteresis input with pull-up resistance
С	P-ch P-ch N-ch N-ch CMOS	With input pull-up resistance control CMOS level input/output
D	P-ch N-ch N-ch W————————————————————————————————————	CMOS level input/output
E	P-ch N-ch N-ch CMOS	Hysteresis input CMOS level output (Continued)

Type	Circuit	Remarks
F	Open drain control signal	CMOS level input/output With open drain control
G	Open drain control signal N-ch Hysteresis input	CMOS level output Hysteresis input With open drain control
Н	P-ch N-ch N-ch CMOS Analog input	CMOS level input/output Analog input
I	N-ch Digital output	 Hysteresis input N-ch open drain output
J	(Flash memory product) Control signal Mode input Diffusion resistance	 (Flash memory product) CMOS level input With high voltage control for flash testing
	(MASK ROM product)	(MASK ROM product) Hysteresis input

■ HANDLING DEVICES

Be careful never to exceed maximum rated voltages (preventing latch-up)

In CMOS IC devices, a condition known as latch-up may occur if voltages higher than Vcc or lower than Vss are applied to input or output pins other than medium-or high-voltage pins, or if the voltage applied between Vcc and Vss pins exceeds the rated voltage level.

When latch-up occurs, the power supply current increases rapidly causing the possibility of thermal damage to circuit elements. Therefore it is necessary to ensure that maximum ratings are not exceeded in circuit operation. Similarly, when turning the analog power supply on or off, it is necessary to ensure that the analog power supply voltages (AV $_{\rm CC}$ and AVRH) and analog input voltages do not exceed the digital power supply (V $_{\rm CC}$).

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \text{ k}\Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins.

3. Treatment of Power Supply Pins (Vcc/Vss)

When multiple Vcc/Vss pins are present, device design considerations for prevention of latch-up and unwanted electromagnetic interference, abnormal strobe signal operation due to ground level rise, and conformity with total output current ratings require that all power supply pins must be externally connected to power supply or ground.

Consideration should be given to connecting power supply sources to the $V_{\rm CC}/V_{\rm SS}$ pins of this device with as low impedance as possible. It is also recommended that a bypass capacitor of approximately 0.1 μF be placed between the $V_{\rm CC}$ and $V_{\rm SS}$ lines as close to this device as possible.

4. Crystal Oscillator Circuits

Noise around the X0/X1, or X0A/X1A pins may cause this device to operate abnormally. In the interest of stable operation it is strongly recommended that printed circuit board artwork places ground bypass capacitors as close as possible to the X0/X1, X0A/X1A and crystal oscillator (or ceramic oscillator) and that oscillator lines do not cross the lines of other circuits.

5. Precautions when turning the power supply on

In order to prevent abnormal operation in the chip's internal step-down circuits, a voltage rise time during poweron of 50 μ s (0.2 V to 2.7 V) or greater should be assured.

6. Supply Voltage Stabilization

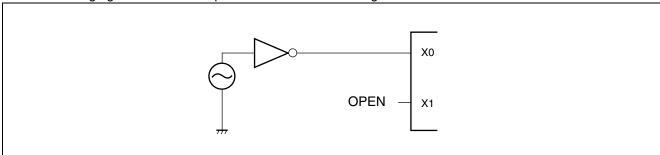
Even within the operating range of $V_{\rm CC}$ supply voltage, rapid voltage fluctuations may cause abnormal operation. As a standard for power supply voltage stability, it is recommended that the peak-to-peak $V_{\rm CC}$ ripple voltage at commercial supply frequency (50/60 Hz) be 10 % or less of $V_{\rm CC}$, and that the transient voltage fluctuation be no more than 0.1 V/ms or less when the power supply is turned on or off.

7. Proper power-on/off sequence

The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be turned on after the digital power supply (Vcc) is turned on. The A/D converter power (AVcc, AVRH) and analog input (AN0 to AN7) must be shut off before the digital power supply (Vcc) is shut off. Care should be taken that AVRH does not exceed AVcc. Even when pins used as analog input pins are doubled as input ports, be sure that the input voltage does not exceed AVcc.

8. Treatment of power supply pins on models with A/D converters

Even when the A/D converters are not in use, be sure to make the necessary connections AVcc = AVRH = Vcc, and AVss = Vss.


9. Notes on Using Power Supply

Only the MB90485B series usually uses a 3 V power supply. By setting Vcc3 = 3 V power supply and Vcc5 = 5 V power supply, P20 to P27, P30 to P37, P40 to P47 and P70 to P77 can be interfaced as 5 V power supplies separately from the main 3 V power supply. Note that the analog power supplies (such as AVcc and AVss) for the A/D converter can be used only as 3 V power supplies.

10. Notes on Using External Clock

Even when using an external clock signal, an oscillation stabilization delay is applied after a power-on reset or when recovering from sub-clock or stop mode. When using an external clock, 25 MHz should be the upper frequency limit.

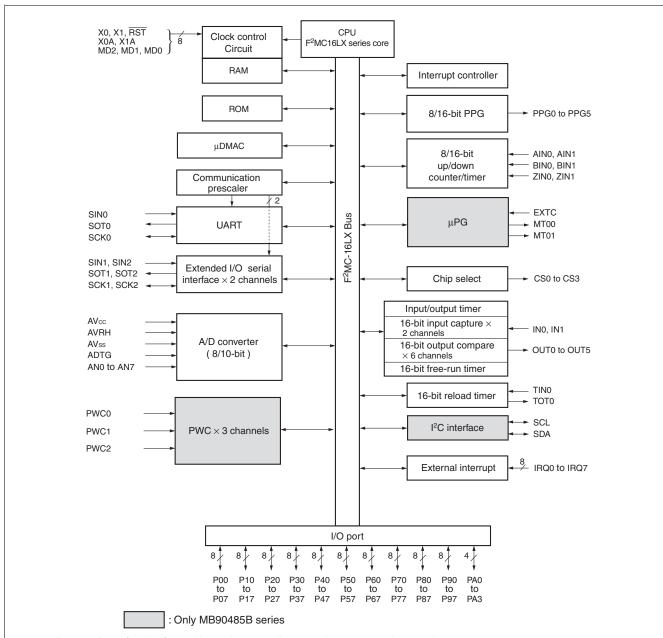
The following figure shows a sample use of external clock signals.

11. Treatment of NC pins

NC (internally connected) pins should always be left open.

12. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu Microelectronics will not guarantee results of operation if such failure occurs.


13. When the MB90480B/485B series microcontroller is used as a single system

When the MB90480B/485B series microcontroller is used as a single system, use connections so the X0A = Vss, and X1A = Open.

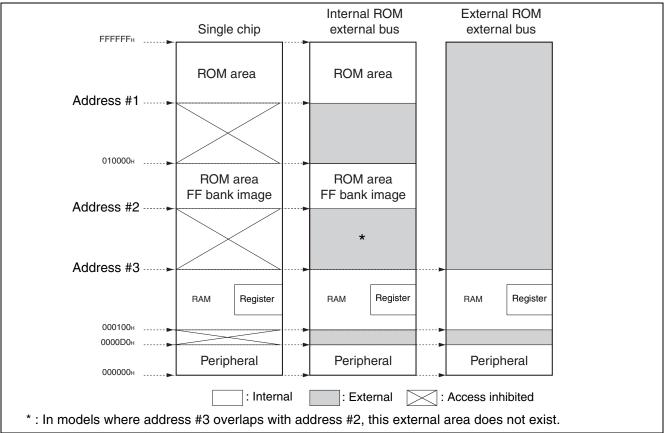
14. Writing to Flash memory

For writing to Flash memory, always ensure that the operating voltage Vcc is between 3.0 V and 3.6 V.

■ BLOCK DIAGRAM

P00 to P07 (8 pins): with an input pull-up resistance setting register. P10 to P17 (8 pins): with an input pull-up resistance setting register.

P40 to P47 (8 pins) : with an open drain setting register. P70 to P77 (8 pins) : with an open drain setting register.


MB90485B series only

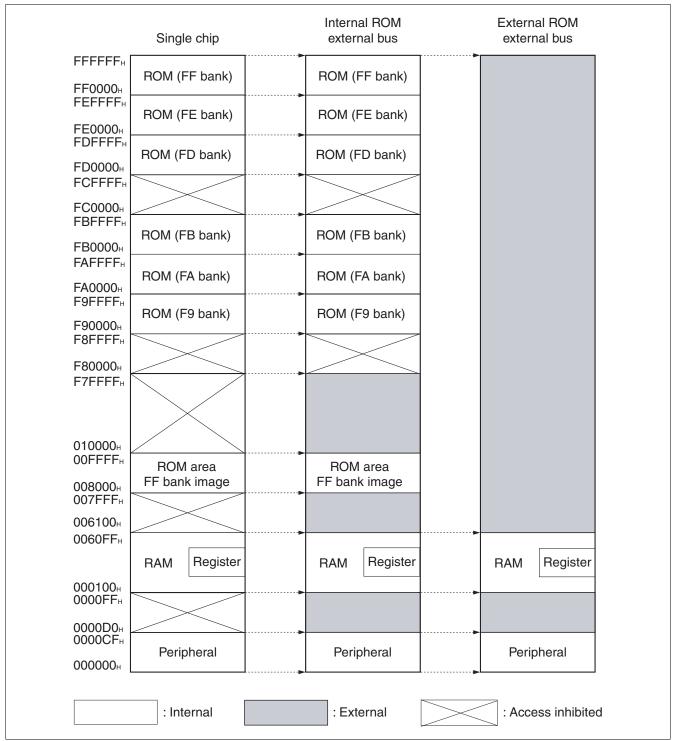
- I²C pin P77 and P76 are N-ch open drain pin (without P-ch) . However, MB90V485B uses the N-ch open drain pin (with P-ch) .
- P20 to P27, P30 to P37, P40 to P47 and P70 to P77 are also used as 3 V/5 V I/F pin.
- As for MB90V485B, input pins (PWC0, PWC1, PWC2/EXTC/SCL and SDA pins) for PWC/ μPG/I²C become CMOS input.

Note: In the above diagram, I/O ports share internal function blocks and pins. However, when a set of pins is used with an internal module, it cannot also be used as an I/O port.

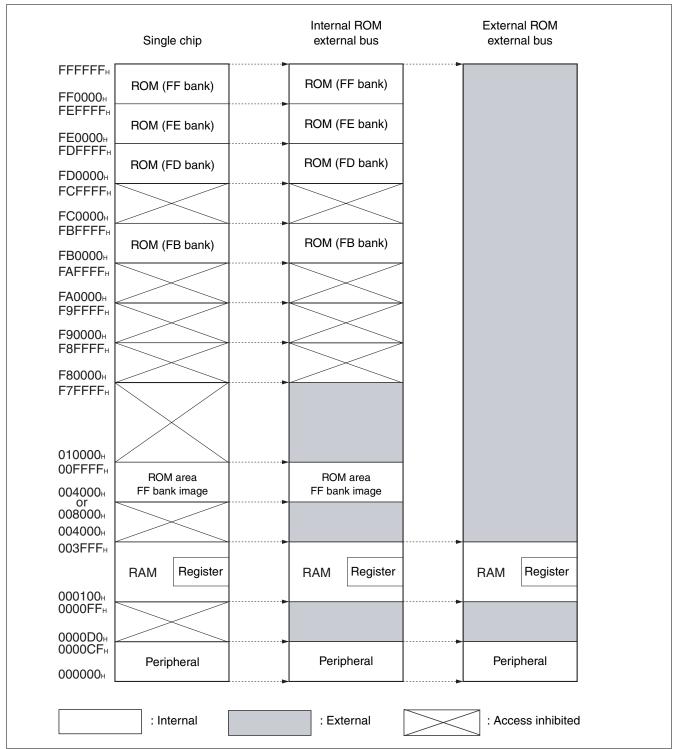
■ MEMORY MAP

• MB90F481B/F482B/487B/488B/483C/F488B/V480B/V485B/F489B

Model	Address #1	Address #2	Address #3
MB90F481B	FC0000 _H *1		001100н
MB90F482B	FC0000н		001900н
MB90487B	FD0000H		002900н
MB90488B	FC0000н	004000н or 008000н, selected by the MS bit in	002900н
MB90F488B	FC0000H	the ROMM register	002900н
MB90V480B	(FC0000H)	and Hollin register	004000н
MB90V485B	(FC0000н)		004000н
MB90483C	FB0000H*4		004000н
MB90F489B	F90000 _H *2	0080000 _H fixed	006100н*3

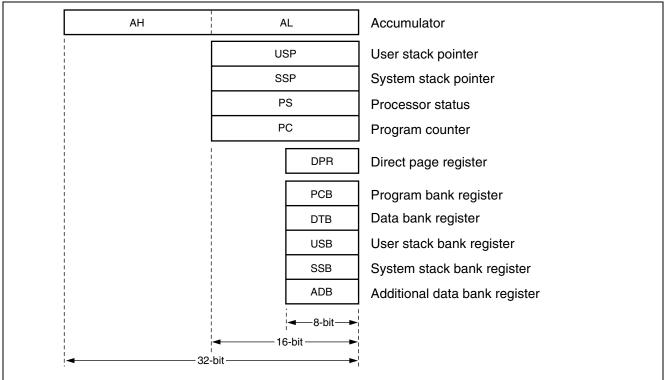

^{*1:} No memory cells from FC0000H to FC7FFFH and FE0000H to FE7FFFH.

The upper part of the 00 bank is set up to mirror the image of FF bank ROM, to enable efficient use of small model C compilers. Because the lower 16-bit address of the FF bank and the lower 16-bit address of the 00 bank are the same, enabling reference to tables in ROM without using the for specification in the pointer declaration.

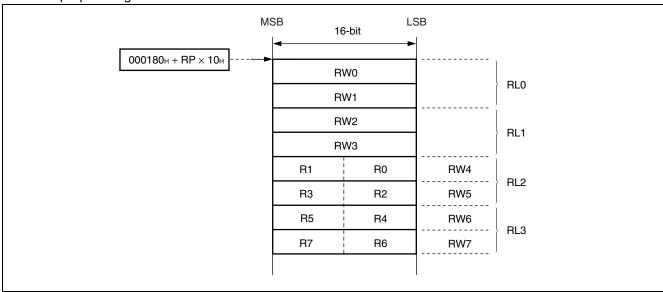

For example, in accessing address $00C000_{H}$ it is actually the contents of ROM at FFC000_H that are accessed. If the MS bit in the ROMM register is set to "0", the ROM area in the FF bank will exceed 48 Kbytes and it is not possible to reflect the entire area in the image in the 00 bank. Therefore the image from FF4000_H to FFFFFF_H is reflected in the 00 bank and the area from FF0000_H to FF3FFF_H can be seen in the FF bank only.

- *2 : In MB90F489B, there is no access to F8 bank and FC bank on the single-chip mode or the internal-ROM external-bus mode.
- *3 : Because installed-RAM area is larger than MB90V485B, MB90F489B should execute emulation in an area that is larger than 004000_H by the emulation memory area setting on the tool side.
- *4 : In MB90483C, there is no access to F8 bank to FA bank and FC bank on the single-chip mode or the internal-ROM external-bus mode.

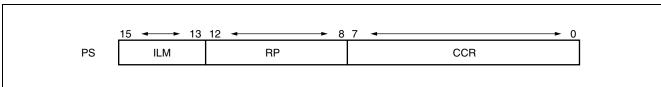
• MB90F489B



MB90483C



■ F²MC-16L CPU PROGRAMMING MODEL


Dedicated registers

• General purpose registers

Processor status

■ I/O MAP

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 data register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 data register	PDR7	R/W	Port 7	XXXXXXXB (MB90480B series) 11XXXXXXB (MB90485B series)
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXXXB
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
0Ан	Port A data register	PDRA	R/W	Port A	XXXX _B
ОВн	Up/down timer input enable register	UDRE	R/W	Up/down timer input control	ХХ000000в
0Сн	Interrupt/DTP enable register	ENIR	R/W		0000000в
0Дн	Interrupt/DTP source register	EIRR	R/W	DTP/external	XXXXXXXXB
0Ен	Request level setting register	ELVD.	R/W	interrupts	0000000в
0Fн	Request level setting register	ELVR	R/W		0000000в
10н	Port 0 direction register	DDR0	R/W	Port 0	0000000в
11н	Port 1 direction register	DDR1	R/W	Port 1	0000000в
12н	Port 2 direction register	DDR2	R/W	Port 2	0000000в
13н	Port 3 direction register	DDR3	R/W	Port 3	0000000в
14н	Port 4 direction register	DDR4	R/W	Port 4	0000000в
15н	Port 5 direction register	DDR5	R/W	Port 5	0000000в
16н	Port 6 direction register	DDR6	R/W	Port 6	0000000в
17н	Port 7 direction register	DDR7	R/W	Port 7	00000000в (MB90480B series) XX000000в (MB90485B series)
18н	Port 8 direction register	DDR8	R/W	Port 8	0000000В
19н	Port 9 direction register	DDR9	R/W	Port 9	0000000в
1Ан	Port A direction register	DDRA	R/W	Port A	0000в
1Вн	Port 4 output pin register	ODR4	R/W	Port 4 (Open-drain control)	0000000В
1Сн	Port 0 input resistance register	RDR0	R/W	Port 0 (resistance control)	0000000в
1Dн	Port 1 input resistance register	RDR1	R/W	Port 1 (resistance control)	0000000в
1Ен	Port 7 output pin register	ODR7	R/W	Port 7 (Open-drain control)	00000000в (MB90480B series) XX000000в (MB90485B series)
1F _H	Analog input enable register	ADER	R/W	Port 6, A/D	11111111в

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
20н	Serial mode register	SMR	R/W		00000Х00в
21н	Serial control register	SCR	W, R/W	UART	00000100в
22н	Serial input/output register	SIDR/SODR	R/W	UANT	XXXXXXXX
23н	Serial status register	SSR	R, R/W		00001000в
24н		(Reserved a	area)	1	
25н	Communication prescaler control register	CDCR	R/W	Communication prescaler (UART)	000000в
26н	Coviet mode control status versiates 0	CMCCO	D D/W		0000в
27н	Serial mode control status register 0	SMCS0	R, R/W	SIO1 (ch.0)	0000010в
28н	Serial data register 0	SDR0	R/W		XXXXXXXX
29н	Communication prescaler control register 0	SDCR0	R/W	Communication prescaler SIO1 (ch.0)	00000в
2Ан	Carial made central status register 1	SMCS1	D D/M		0000в
2Вн	Serial mode control status register 1	SIVICST	R, R/W	SIO2 (ch.1)	0000010в
2Сн	Serial data register 1	SDR1	R/W		XXXXXXXX
2Dн	Communication prescaler control register 1	SDCR1	R/W	Communication prescaler SIO2 (ch.1)	00000в
2Ен	Reload register L (ch.0)	PPLL0	R/W		XXXXXXXX
2Fн	Reload register H (ch.0)	PPLH0	R/W		XXXXXXXX
30н	Reload register L (ch.1)	PPLL1	R/W		XXXXXXXX
31н	Reload resister H (ch.1)	PPLH1	R/W		XXXXXXXXB
32н	Reload register L (ch.2)	PPLL2	R/W		XXXXXXXXB
33н	Reload register H (ch.2)	PPLH2	R/W		XXXXXXXXB
34н	Reload register L (ch.3)	PPLL3	R/W		XXXXXXXX
35н	Reload register H (ch.3)	PPLH3	R/W		XXXXXXXX
36н	Reload register L (ch.4)	PPLL4	R/W	8/16-bit PPG	XXXXXXXX
37н	Reload register H (ch.4)	PPLH4	R/W	(ch.0 to ch.5)	XXXXXXXX
38н	Reload register L (ch.5)	PPLL5	R/W		XXXXXXXX
39н	Reload register H (ch.5)	PPLH5	R/W		XXXXXXXX
3Ан	PPG0 operating mode control register	PPGC0	R/W		0Х000ХХ1в
3Вн	PPG1 operating mode control register	PPGC1	R/W		0Х000001в
3Сн	PPG2 operating mode control register	PPGC2	R/W		0Х000ХХ1в
3Dн	PPG3 operating mode control register	PPGC3	R/W		0Х000001в
3Ен	PPG4 operating mode control register	PPGC4	R/W		0X000XX1в
3Fн	PPG5 operating mode control register	PPGC5	R/W		0Х000001в
40н	PPG0, PPG1 output control register	PPG01	R/W	8/16-bit PPG	0000000В
41н		(Reserved a	area)		
42н	PPG2, PPG3 output control register	PPG23	R/W	8/16-bit PPG	0000000в
43н		(Reserved a	area)	L	<u> </u>

Address	Register name	Abbre- viated register name	Read/ Write	Resource name	Initial value
44н	PPG4, PPG5 output control register	PPG45	R/W	8/16-bit PPG	0000000В
45н	(F	eserved a	area)		
46н	Control atotus register	ADCS1	R/W		0000000В
47н	Control status register	ADCS2	W, R/W	A/D converter	0000000В
48н	Doto register	ADCR1	R	A/D converter	XXXXXXXXB
49н	Data register	ADCR2	W, R		00000XXXB
4Ан	Output compare register (ch.0) lower digits	OCCP0	R/W		0000000В
4Вн	Output compare register (ch.0) upper digits	OCCFU	I		0000000В
4Сн	Output compare register (ch.1) lower digits	OCCP1	R/W		0000000В
4Dн	Output compare register (ch.1) upper digits	OCCFI	I		0000000В
4Е н	Output compare register (ch.2) lower digits	OCCP2	R/W		0000000В
4Fн	Output compare register (ch.2) upper digits	OCCP2	IT/VV		0000000В
50н	Output compare register (ch.3) lower digits	OCCP3	R/W		0000000В
51н	Output compare register (ch.3) upper digits	OCCES	I	16-bit	0000000В
52н	Output compare register (ch.4) lower digits	OCCP4	R/W	input/output	0000000В
53н	Output compare register (ch.4) upper digits	000074	I	timer output compare	0000000В
54н	Output compare register (ch.5) lower digits	OCCP5	R/W	(ch.0 to ch.5)	0000000В
55н	Output compare register (ch.5) upper digits	OCCES	I		0000000В
56н	Output compare control register (ch.0)	OCS0	R/W		000000в
57н	Output compare control register (ch.1)	OCS1	R/W		00000в
58н	Output compare control register (ch.2)	OCS2	R/W		000000в
59н	Output compare control register (ch.3)	OCS3	R/W		00000в
5А н	Output compare control register (ch.4)	OCS4	R/W		000000в
5Вн	Output compare control register (ch.5)	OCS5	R/W		00000в
5Сн	Input capture data register (ch.0) lower digits	IPCP0	R		XXXXXXXX
5Dн	Input capture data register (ch.0) upper digits	IFCFU	R	16-bit input/output	XXXXXXXX
5Ен	Input capture data register (ch.1) lower digits	IPCP1	R	timer input capture	XXXXXXXX
5Fн	Input capture data register (ch.1) upper digits	IFUFI	R	(ch.0, ch.1)	XXXXXXXX
60н	Input capture control status register	ICS01	R/W		0000000в
61н	(F	leserved a	area)	1	

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
62н	Timer counter data register lower digits	TCDT	R/W		0000000В
63н	Timer counter data register upper digits	TCDT	R/W		0000000В
64н	Timer counter control status register	TCCS	R/W	16-bit input/output	0000000В
65н	Timer counter control status register	TCCS	R/W	timer free-run timer	000000в
66н	Compare clear register lower digits	CDCL D	R/W		XXXXXXXX
67н	Compare clear register upper digits	CPCLR	H/VV		XXXXXXXX
68н	Up/down count register (ch.0)	UDCR0	R		0000000в
69н	Up/down count register (ch.1)	UDCR1	R		0000000В
6Ан	Reload/compare register (ch.0)	RCR0	W		0000000в
6Вн	Reload/compare register (ch.1)	RCR1	W	8/16-bit up/down	0000000в
6Сн	Counter control register (ch.0) lower digits	CCRL0	W, R/W	counter/timer	0Х00Х000в
6Dн	Counter control register (ch.0) upper digits	CCRH0	R/W		0000000В
6Ен					
6Fн	ROM mirror function select register	ROMM	R/W	ROM mirroring function	+1в
70н	Counter control register (ch.1) lower digits	CCRL1	W, R/W	8/16-bit up/down	0Х00Х000в
71н	Counter control register (ch.1) upper digits	CCRH1	R/W	counter/timer	-0000000в
72н	Counter status register (ch.0)	CSR0	R, R/W		0000000В
73н		(Reserved	area)		
74н	Counter status register (ch.1)	CSR1	R, R/W	8/16-bit UDC	0000000В
75н		(Reserved	area)		
76н*	PWC control/status register	PWCSR0	R, R/W		0000000В
77н*	1 WO control/status register	1 4400110	11, 11/ 44	PWC (ch.0)	000000Хв
78н*	PWC data buffer register	PWCR0	R/W	1 770 (011.0)	0000000В
79н*	1 WO data buller register	1 770110	11/ **		0000000В
7 А н*	PWC control/status register	PWCSR1	R, R/W		0000000В
7Bн*	1 We define patatas register	1 7700111	11, 11, 17	PWC (ch.1)	000000Хв
7Сн*	PWC data buffer register	PWCR1	R/W	1 770 (011.1)	0000000В
7Dн*	1 WO data buller register	1 770111	11/ **		0000000В
7Eн*	PWC control/status register	PWCSR2	R, R/W		0000000В
7Fн*	1 WO control/status register	1 000112	11, 11/ **	PWC (ch.2)	000000Хв
80н*	PWC data buffer register	PWCR2	R/W	1 440 (011.2)	0000000В
81н*	1 110 data bullet register	1 440112	1 1/ V V		0000000В
82н*	Dividing ratio control register	DIVR0	R/W	PWC (ch.0)	00в
83н		(Reserved	area)		
84н*	Dividing ratio control register	DIVR1	R/W	PWC (ch.1)	00в
85н		(Reserved	area)		
86н*	Dividing ratio control register	DIVR2	R/W	PWC (ch.2)	ООв
87н		(Reserved	area)	-	

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
88н*	Bus status register	IBSR	R		0000000в
89н*	Bus control register	IBCR	R/W		0000000В
8Ан*	Clock control register	ICCR	R/W	I ² C	0XXXXXB
8Вн*	Address register	IADR	R/W		-XXXXXXXB
8Сн*	Data register	IDAR	R/W		XXXXXXXXB
8Dн		(Reserved	area)		
8Ен*	μPG control status register	PGCSR	R/W	μPG	00000в
8Fн to 9Bн		(Disable	d)		
9Сн	μDMAC status register lower digits	DSRL	R/W	μDMAC	0000000В
9Dн	μDMAC status register upper digits	DSRH	R/W	μDMAC	0000000В
9Ен	Program address detection control status resister	PACSR	R/W	Address match detection function	0000000В
9Fн	Delayed interrupt source general/cancel register	DIRR	R/W	Delayed interrupt generator module	Ов
А0н	Low-power consumption mode control register	LPMCR	W, R/W	Low-power consumption	00011000в
А1н	Clock select register	CKSCR	R, R/W	Low-power consumption	11111100в
А2 н, А3 н		(Reserved	area)		
А4н	μDMAC stop status register	DSSR	R/W	μDMAC	0000000В
А 5н	Automatic ready function select register	ARSR	W	External pins	001100в
А6 н	External address output control register	HACR	W	External pins	******B
А7 н	Bus control signal select register	EPCR	W	External pins	1000*10 -в
А8н	Watchdog timer control register	WDTC	R, W	Watchdog timer	XXXXX111 _B
А9н	Timebase timer control register	TBTC	W, R/W	Timebase timer	1ХХ00100в
ААн	Watch timer control register	WTC	R, R/W	Watch timer	10001000в
АВн		(Reserved	area)		
АСн	μDMAC enable register lower digits	DERL	R/W	μDMAC	0000000В
ADн	μDMAC enable register upper digits	DERH	R/W	μDMAC	0000000В
АЕн	Flash memory control status register	FMCS	W, R/W	Flash memory interface	000Х0000в
AFн		(Disable	d)		
В0н	Interrupt control register 00	ICR00	W, R/W		XXXX0111 _B
В1н	Interrupt control register 01	ICR01	W, R/W		XXXX0111 _B
В2н	Interrupt control register 02	ICR02	W, R/W		XXXX0111 _B
В3н	Interrupt control register 03	ICR03	W, R/W		XXXX0111 _B
В4н	Interrupt control register 04	ICR04	W, R/W	Interrupt controller	XXXX0111 _B
В5н	Interrupt control register 05	ICR05	W, R/W		XXXX0111 _B
В6н	Interrupt control register 06	ICR06	W, R/W		XXXX0111 _B
В7н	Interrupt control register 07	ICR07	W, R/W		XXXX0111 _B
В8н	Interrupt control register 08	ICR08	W, R/W		XXXX0111 _B

Address	Register name	Abbreviated register name	Read/ Write	Resource name	Initial value
В9н	Interrupt control register 09	ICR09	W, R/W		XXXX0111 _B
ВАн	Interrupt control register 10	ICR10	W, R/W		XXXX0111 _B
ВВн	Interrupt control register 11	ICR11	W, R/W		XXXX0111 _B
ВСн	Interrupt control register 12	ICR12	W, R/W	Interrupt controller	XXXX0111 _B
ВОн	Interrupt control register 13	ICR13	W, R/W		XXXX0111 _B
ВЕн	Interrupt control register 14	ICR14	W, R/W		XXXX0111 _B
ВГн	Interrupt control register 15	ICR15	W, R/W		XXXX0111 _B
С0н	Chip select area mask register 0 CMR0		R/W		00001111в
С1н	Chip select area register 0	CAR0	R/W		111111111
С2н	Chip select area mask register 1	CMR1	R/W		00001111в
СЗн	Chip select area register 1	CAR1	R/W		111111111
С4н	Chip select area mask register 2	CMR2	R/W	Chip select	00001111в
С5н	Chip select area register 2	CAR2	R/W	function	11111111В
С6н	Chip select area mask register 3	CMR3	R/W		00001111в
С7н	Chip select area register 3	CAR3	R/W		111111111
С8н	Chip select control register	CSCR	R/W		000*в
С9н	Chip select active level register	CALR	R/W		0000в
САн	Timer control status register	TMCSR	R/W		0000000В
СВн	Timer control status register	TWOSH	□/ VV	16-bit reload timer	0000в
ССн	16-bit timer register/	TMR/TMRLR	R/W	10-bit reload tilller	XXXXXXXX
СДн	16-bit reload register	TIVIT () TIVIT (ET (10,44		70000000
СЕн		(Reserved	l area)		
СҒн	PLL output control register	PLLOS	W	Low-power consumption	Х0в
D0н to FFн		(External	area)		
100н to #н		(RAM a	rea)		
1FF0н	Program address detection register 0 (Low order address)				
1FF1н	Program address detection register 0 (Middle order address)	PADR0	R/W	Address match detection function	XXXXXXXX
1FF2н	Program address detection register 0 (High order address)				
1FF3н	Program address detection register 1 (Low order address)				
1FF4н	Program address detection register 1 (Middle order address)	PADR1	R/W	Address match detection function	XXXXXXXXB
1FF5н	Program address detection register 1 (High order address)		_		

^{*:} These registers are only for MB90485B series.
They are used as the reserved area on MB90480B series.

(Continued)

Descriptions for read/write R/W: Readable and writable

R : Read only W : Write only

Descriptions for initial value

0 : The initial value of this bit is "0".1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

- : This bit is not used.

: The initial value of this bit is "1" or "0".

The value depends on the mode pin (MD2, MD1 and MD0) .

+ : The initial value of this bit is "1" or "0".

The value depends on the RAM area of device.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

	Clear of	μ DMAC	Interru	pt vector	Interrupt control register		
Interrupt source	El ² OS	channel number	Number	Address	Number	Address	
Reset	×	_	#08	FFFFDCH	_	_	
INT9 instruction	×	_	#09	FFFFD8 _H		_	
Exception	×	_	#10	FFFFD4 _H		_	
INT0 (IRQ0)	0	0	#11	FFFFD0 _H	ICDOO	000000	
INT1 (IRQ1)	0	×	#12	FFFFCCH	ICR00	0000В0н	
INT2 (IRQ2)	0	×	#13	FFFFC8 _H	10004	000001	
INT3 (IRQ3)	0	×	#14	FFFFC4 _H	ICR01	0000В1н	
INT4 (IRQ4)	0	×	#15	FFFFC0 _H	IODOO	000000	
INT5 (IRQ5)	0	×	#16	FFFFBC _H	ICR02	0000В2н	
INT6 (IRQ6)	0	×	#17	FFFFB8⊦	IODOO	000000	
INT7 (IRQ7)	0	×	#18	FFFFB4 _H	ICR03	0000ВЗн	
PWC1 (MB90485B series only)	0	×	#19	FFFFB0 _H	10004	0000004	
PWC2 (MB90485B series only)	0	×	#20	FFFFACH	ICR04	0000В4н	
PWC0 (MB90485B series only)	0	1	#21	FFFFA8 _H	IODOS	000005	
PPG0/PPG1 counter borrow	×	×	#22	FFFFA4 _H	ICR05	0000В5н	
PPG2/PPG3 counter borrow	×	×	#23	FFFFA0 _H	IODOO	000000	
PPG4/PPG5 counter borrow	×	×	#24	FFFF9C _H	ICR06	0000В6н	
8/16-bit up/down counter/ timer (ch.0, ch.1) compare/ underflow/overflow/up/down inversion	0	×	#25	FFFF98⊦	ICR07	0000В7н	
Input capture (ch.0) load	0	5	#26	FFFF94 _H			
Input capture (ch.1) load	0	6	#27	FFFF90 _H	ICR08	0000В8н	
Output compare (ch.0) match	0	8	#28	FFFF8C _H	ICHUO	ООООВОН	
Output compare (ch.1) match	0	9	#29	FFFF88⊦	ICR09	0000В9н	
Output compare (ch.2) match	0	10	#30	FFFF84 _H	ICHU9	0000Б9н	
Output compare (ch.3) match	0	×	#31	FFFF80 _H	ICR10	0000ВАн	
Output compare (ch.4) match	0	×	#32	FFFF7C _H	ICHIU	UUUUDAH	
Output compare (ch.5) match	0	×	#33	FFFF78 _H	ICR11	0000ВВн	
UART sending completed	0	11	#34	FFFF74 _H	IONTI	ООООВЬН	
16-bit free-run timer overflow, 16-bit reload timer underflow*2	0	12	#35	FFFF70 _H	ICR12	0000ВСн	
UART receiving completed	0	7	#36	FFFF6C _H			
SIO1 (ch.0)	0	13	#37	FFFF68⊦	ICR13	0000ВДн	
SIO2 (ch.1)	0	14	#38	FFFF64 _H	IONIS	ИОООВЫН	

(Continued)

	Clear of	μ DMAC	Interru	pt vector	Interrupt control register		
Interrupt source	El ² OS	channel number	Number	Address	Number	Address	
I ² C interface (MB90485B series only)	×	×	#39	FFFF60 _H	ICR14	0000ВЕн	
A/D converter	0	15	#40	FFFF5C _H			
Flash write/erase, timebase timer, watch timer *1	×	×	#41	FFFF58 _H	ICR15	000000	
Delay interrupt generator module	×	×	#42	FFFF54 _H	ICHIS	0000BFн	

- imes: Interrupt request flag is not cleared by the interrupt clear signal.
- : Interrupt request flag is cleared by the interrupt clear signal.
- Interrupt request flag is cleared by the interrupt clear signal (stop request present) .
- *1: The Flash write/erase, timebase timer, and watch timer cannot be used at the same time.
- *2: When the 16-bit reload timer underflow interrupt is changed from enable (TMCSR: INTE = 1) to disable (TMCSR: INTE = 0), disable the interrupt in the interrupt control register (ICR12: IL2 to 0: 111_B), then set the INTE bit to 0.

Note: If there are two interrupt sources for the same interrupt number, the resource will clear both interrupt request flags at the El 2 OS/ μ DMAC interrupt clear signal. Therefore if either of the two sources uses the El 2 OS/ μ DMAC function, the other interrupt function cannot be used. The interrupt request enable bit for the corresponding resource should be set to "0" and interrupt requests from that resource should be handled by software polling.

■ PERIPHERAL RESOURCES

1. I/O Ports

The I/O ports perform the functions of either sending data from the CPU to the I/O pins, or loading information from the I/O into the CPU, according to the setting of the corresponding port data register (PDR). The input/output direction of each I/O pin can be set in individual bit units by the port direction register (DDR) for each I/O port.

The MB90480B/485B series has 84 input/output pins. The I/O ports are port 0 through port A.

(1) Port Data Registers

PDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000000H	P07	P06	P05	P04	P03	P02	P01	P00	Undefined	R/W*1
PDR1	7	6	5	4	3	2	1	0		
Address: 000001н	P17	P16	P15	P14	P13	P12	P11	P10	Undefined	R/W*1
PDR2	7	6	5	4	3	2	1	0		
Address: 000002H	P27	P26	P25	P24	P23	P22	P21	P20	Undefined	R/W*1
PDR3	7	6	5	4	3	2	1	0		
Address: 000003н	P37	P36	P35	P34	P33	P32	P31	P30	Undefined	R/W*1
PDR4	7	6	5	4	3	2	1	0		
Address: 000004H	P47	P46	P45	P44	P43	P42	P41	P40	Undefined	R/W*1
PDR5	7	6	5	4	3	2	1	0		
Address: 000005H	P57	P56	P55	P54	P53	P52	P51	P50	Undefined	R/W*1
PDR6	7	6	5	4	3	2	1	0		
Address: 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Undefined	R/W*1
PDR7	7	6	5	4	3	2	1	0		
Address: 000007н	P77	P76	P75	P74	P73	P72	P71	P70	Undefined*2	R/W*1
PDR8	7	6	5	4	3	2	1	0		
Address: 000008H	P87	P86	P85	P84	P83	P82	P81	P80	Undefined	R/W*1
PDR9	7	6	5	4	3	2	1	0		
Address : 000009н	P97	P96	P95	P94	P93	P92	P91	P90	Undefined	R/W*1
PDRA	7	6	5	4	3	2	1	0		
Address : 00000Aн	_	_	_	_	PA3	PA2	PA1	PA0	Undefined	R/W*1

^{*1:} The R/W indication for I/O ports is somewhat different than R/W access to memory, and involves the following operations.

Input mode

Read: Reads the corresponding signal pin level.

Write: Writes to the output latch.

Output mode

Read: Reads the value from the data register latch.

Write: Outputs the value to the corresponding signal pin.

^{*2:} The initial value of this bit is "11XXXXXXB" on MB90485B series.

(2)	Port	Direction	Registers
-----	------	-----------	-----------

DDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000010 _H	D07	D06	D05	D04	D03	D02	D01	D00	0000000в	R/W
DDD4		200		20.				200		
DDR1	7	6	5	4	3	2	1	0		544
Address: 000011H	D17	D16	D15	D14	D13	D12	D11	D10	0000000В	R/W
DDR2	7	6	5	4	3	2	1	0		
Address: 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000в	R/W
DDR3	7	6	5	4	3	2	1	0	•	
Address : 000013 _H	D37	D36	D35	D34	D33	D32	D31	D30	0000000В	R/W
DDR4	7	6	5	4	3	2	1	0	•	
Address : 000014 _H	D47	D46	D45	D44	D43	D42	D41	D40	0000000в	R/W
DDR5	7	6	5	4	3	2	4	0	l	
Address : 000015н	D57	D56	D55	D54	D53	D52	1 D51	D50	0000000В	R/W
DDR6				4			4	0		
Address : 000016 _H	7 D67	6 D66	5 D65	D64	3 D63	2 D62	1 D61	D60	0000000в	R/W
DDR7							_			
Address : 000017 _H	7	6	5	4	3	2	1	0	00000000в*2	R/W
Address . 000017H	D77* ¹	D76*1	D75	D74	D73	D72	D71	D70	0000000B =	□/ VV
DDR8	7	6	5	4	3	2	1	0		
Address : 000018н	D87	D86	D85	D84	D83	D82	D81	D80	0000000в	R/W
DDR9	7	6	5	4	3	2	1	0	•	
Address : 000019 _H	D97	D96	D95	D94	D93	D92	D91	D90	0000000в	R/W
DDRA	7	6	5	4	3	2	1	0	I	
Address : 00001A _H	<u> </u>	<u> </u>	<u> </u>	4	DA3	DA2	DA1	DA0	0000в	R/W
							<u> </u>			

^{*1 :} The value is set to "—" on MB90485B series only.

- When a set of pins is functioning as a port, the corresponding signal pins are controlled as follows.
 - 0 : Input mode.
 - 1 : Output mode. Reset to "0".

Notes: • When any of these registers are accessed using a read-modify-write type instruction (such as a bit set instruction), the bit specified in the instruction will be set to the indicated value. However, the contents of output registers corresponding to any other bits having input settings will be rewritten to the input values of those pins at that time.

For this reason, when changing any pin that has been used for input to output, first write the desired value to the PDR register before setting the DDR register for output.

• P76, P77 (MB90485B series only)

This port has no DDR. To use P77 and P76 as I^2C pins, set the PDR value to "1" so that port data remains enabled (to use P77 and P76 for general purposes, disable I^2C). The port is an open drain output (with no P-ch).

To use it as an input port, therefore, set the PDR to "1" to turn off the output transistor and add a pull-up resistor to the external output.

^{*2 :} The initial value of this bit is "XX000000B" on MB90485B series only.

(3) Port Input Resistance Registers

RDR0	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00001C _H	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	0000000В	R/W
RDR1	7	6	5	4	3	2	1	0		
Address: 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	0000000В	R/W

These registers control the use of pull-up resistance in input mode.

- 0 : No pull-up resistance in input mode.
- 1: With pull-up resistance in input mode.

In output mode, these registers have no function (no pull-up resistance) . Input/output mode settings are controlled by the setting of port direction (DDR) registers.

In case of a stop (SPL=1), no pull-up resistance is applied (high impedance). Using of this function is prohibited when an external bus is used. Do not write to these registers.

(4) Port Output Pin Registers

ODR7	7	6	5	4	3	2	1	0	Initial value	Access
Address: 00001EH	OD77*1	OD76*1	OD75	OD74	OD73	OD72	OD71	OD70	0000000B*2	R/W
ODR4	7	6	5	4	3	2	1	0		
Address: 00001BH	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	0000000в	R/W

^{*1:} The value is set to "—" on MB90485B series only.

These registers control open drain settings in output mode.

- 0: Standard output port functions in output mode.
- 1 : Open drain output port in output mode.

In input mode, these registers have no function (Hi-Z output). Input/output mode settings are controlled by the setting of port direction (DDR) registers. Using of this function is prohibited when an external bus is used. Do not write to these registers.

(5) Analog Input Enable Register

ADER	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00001FH	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111в	R/W

This register controls the port 6 pins as follows.

- 0 : Port input/output mode.
- 1 : Analog input mode. The default value at reset is all "1".

(6) Up/down Timer Input Enable Register

UDER	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00000Bн	_	_	UDE5	UDE4	UDE3	UDE2	UDE1	UDE0	ХХ000000в	R/W

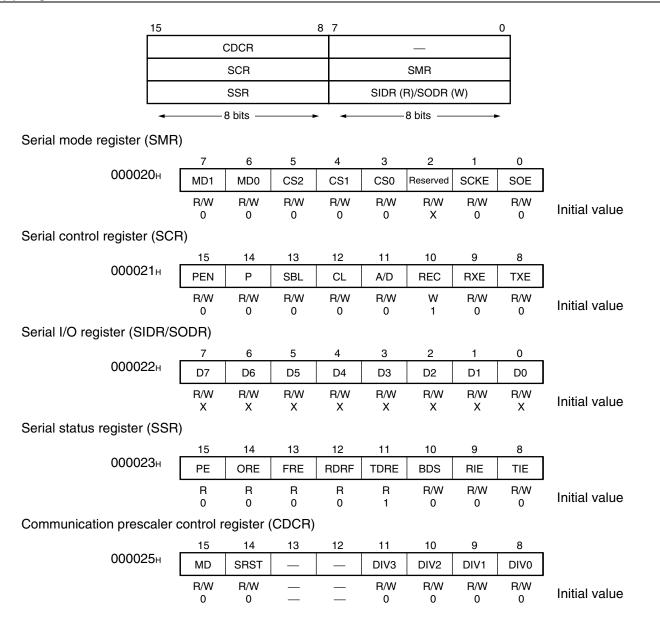
This register controls the port 3 pins as follows.

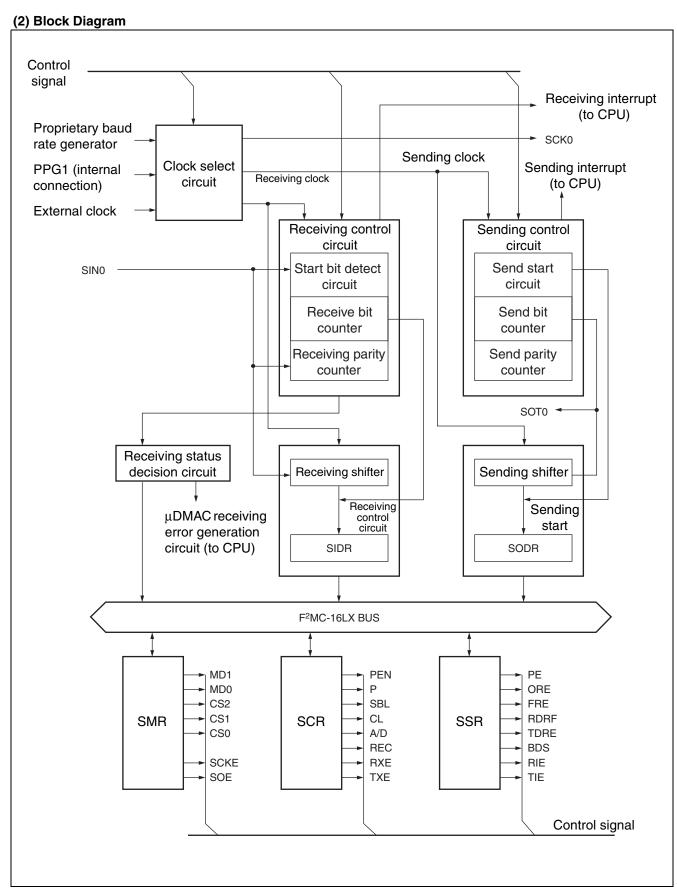
- 0 : Port input mode.
- 1 : Up/down timer input mode. The default value at reset is "0".

^{*2 :} The initial value of this bit is "XX000000₀" on MB90485B series only.

2. UART

The UART is a serial I/O port for asynchronous (start-stop synchronized) communication as well as CLK synchronized communication.


- Full duplex double buffer
- Transfer modes: asynchronous (start-stop synchronized), or CLK synchronized (no start bit or stop bit).
- Multi-processor mode supported.
- Embedded proprietary baud rate generator


Asynchronous : 76923/38461/19230/9615/500 k/250 kbps

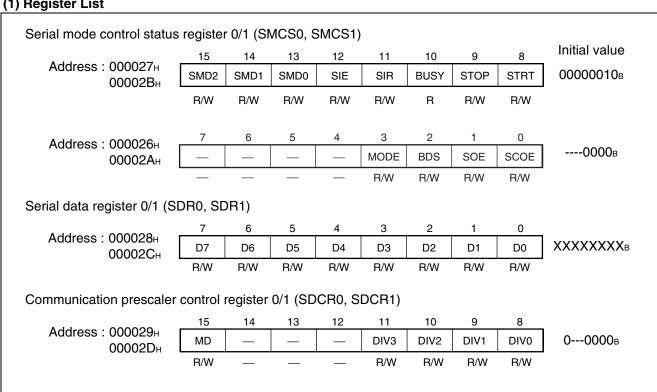
CLK synchronized: 16 M/8 M/4 M/2 M/1 M/500 kbps

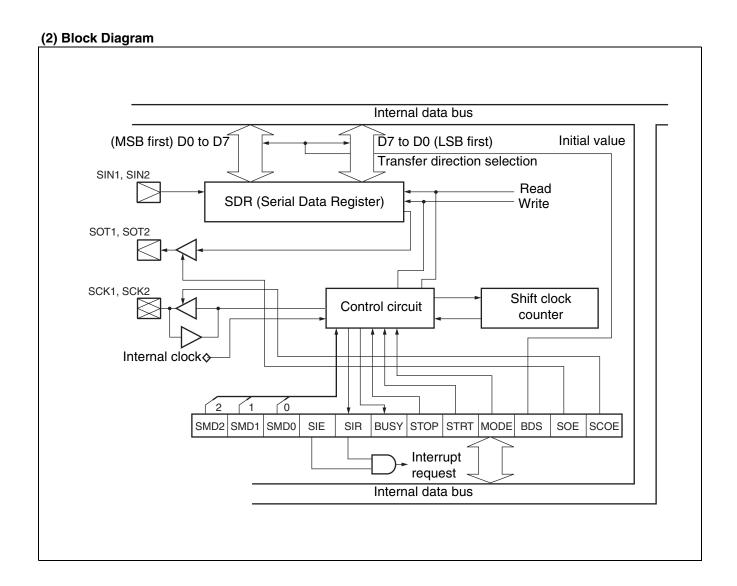
- External clock setting available, allows use of any desired baud rate.
- Can use internal clock feed from PPG1.
- Data length: 7-bit (asynchronous normal mode only) or 8-bit.
- Master/slave type communication functions (in multi-processor mode) .
- Error detection functions (parity, framing, overrun)
- Transfer signals are NRZ encoded.
- μDMAC supported (for receiving/sending)

(1) Register List

3. Expanded I/O Serial Interface

The expanded I/O serial interface is an 8-bit × 1-channel serial I/O interface for clock synchronized data transfer. A selection of LSB-first or MSB-first data transfer is provided.


There are two serial I/O operation modes.


 Internal shift clock mode : Data transfer is synchronized with the internal clock signal.

• External shift clock mode : Data transfer is synchronized with a clock signal input from the external clock

signal pin (SCK). In this mode the general-purpose port that shares the external clock signal pin (SCK) can be used for transfer according to CPU instructions.

(1) Register List

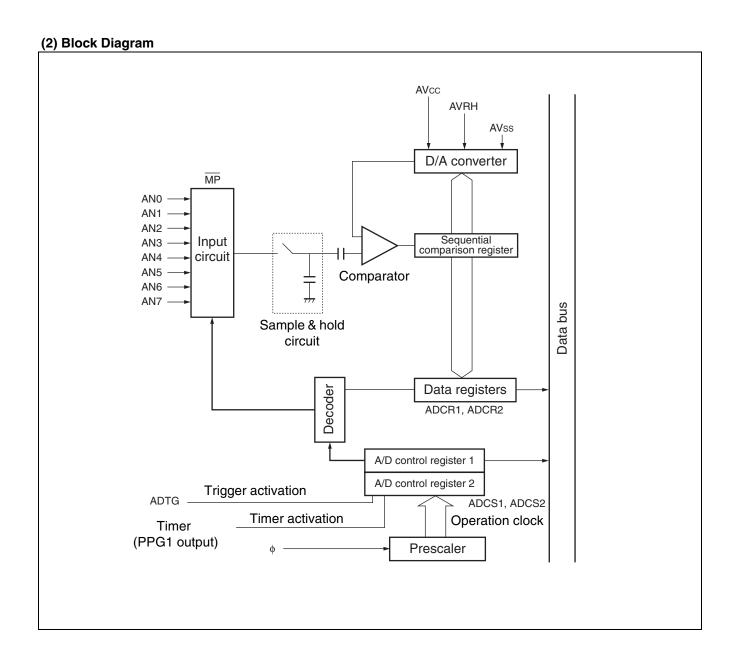
4. 8/10-bit A/D Converter

The A/D converter converts analog input voltage to digital values, and provides the following features.

- \bullet Conversion time : minimum 3.68 μs per channel
 - (92 machine cycles at 25 MHz machine clock, including sampling time)
- Sampling time : minimum 1.92 μs per channel (48 machine cycles at 25 MHz machine clock)
- RC sequential comparison conversion method, with sample & hold circuit.
- 8-bit or 10-bit resolution
- Analog input selection of 8 channels

Single conversion mode: Conversion from one selected channel.

Scan conversion mode: Conversion from multiple consecutive channels, programmable selection of up to 8 channels.


Continuous conversion mode: Repeated conversion of specified channels.

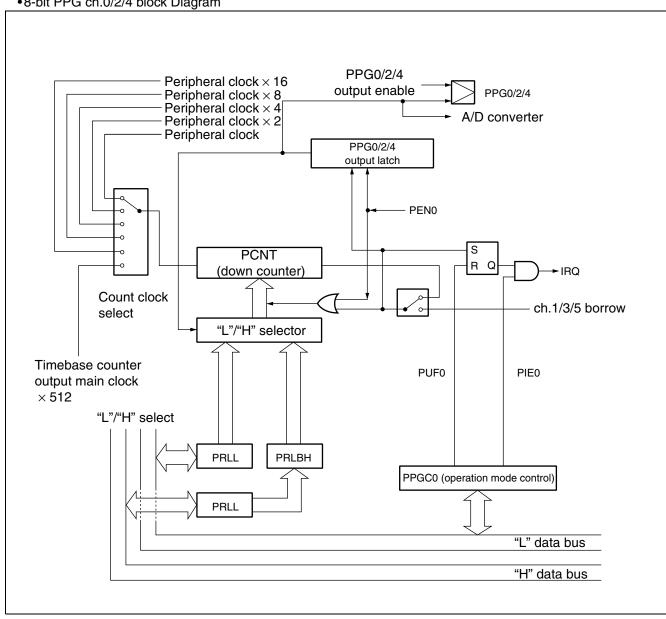
Stop conversion mode: Conversion from one channel followed by a pause until the next activation allows to synchronize with conversion start.

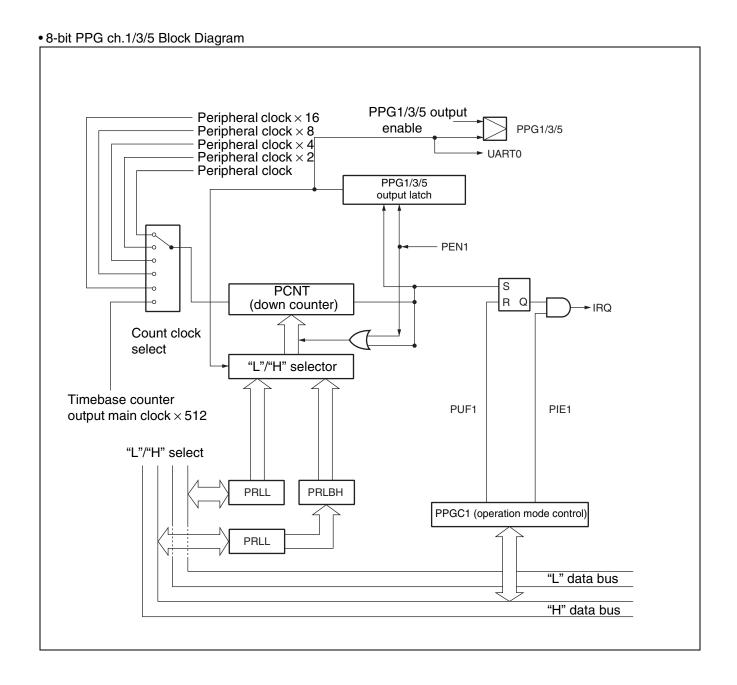
- At the end of A/D conversion, an A/D conversion completed interrupt request can be generated to the CPU.
 The interrupt can be used activate the μDMAC in order to transfer the results of A/D conversion to memory for efficient continuous processing.
- The starting factor conversion may be selected from software, external trigger (falling edge), or timer (rising edge).

(1) Register List

ADCS2, ADCS1 (Contrador) ADCS1	7	6	51 <i>)</i> 5	4	3	2	1	0	
Address : 000046H	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	1.20.1
	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	←Initial value ←Bit attributes
ADCS2	15	14	13	12	11	10	9	8	
Address : 000047 _H	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	←Initial value ←Bit attributes
	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 R/W	0 W	0 R/W	
ADCR2, ADCR1 (Data	register)							
ADCR1	7	6	5	4	3	2	1	0	
Address: 000048H	D7	D6	D5	D4	D3	D2	D1	D0	. Initial value
	X R	X R	X R	X R	X R	X R	X R	X R	←Initial value ←Bit attributes
ADCR2	15	14	13	12	11	10	9	8	
Address: 000049H	S10	ST1	ST0	CT1	CT0	_	D9	D8	
	0 W	0 W	0 W	0 W	0 W	X R	X R	X R	←Initial value ←Bit attributes

5. 8/16-bit PPG


The 8/16-bit PPG is an 8-bit reload timer module that produces a PPG output using a pulse from the timer operation. Hardware resources include 6×8 -bit down counters, 12×8 -bit reload timers, 3×16 -bit control registers, 6 × external pulse output pins, and 6 × interrupt outputs. Note that MB90480B/485B series has six channels for 8-bit PPG use, which can also be combined as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5 to operate as a three-channel 16-bit PPG. The following is a summary of functions.


- 8-bit PPG output 6-channel independent mode: Provides PPG output operation on six independent channels.
- 16-bit PPG output operation mode: Provides 16-bit PPG output on three channels. The six original channels are used in combination as PPG0 + PPG1, PPG2 + PPG3, and PPG4 + PPG5.
- 8+8-bit PPG output operation mode: Output from PPG0 (PPG2/PPG4) is used as clock input to PPG1 (PPG3/ PPG5) to provide to 8-bit PPG output at any desired period length.
- PPG output operation : Produces pulse waves at any desired period and duty ratio. The PPG module can also be used with external circuits as a D/A converter.

	7	6	5	4	3	2	1	0	
00003 A н 00003 C н	PEN0		PE00	PIE0	PUF0		_	Reserved	
00003Сн	R/W 0		R/W 0	R/W 0	R/W 0			<u> </u>	Read/write Initial value
PPGC1/PPGC3/PPGC5 (PPG1/PPG3/PPG5 operation mode control register)									
00003Вн	15	14	13	12	11	10	9	88	
00003 D н	PEN1	_	PE10	PIE1	PUF1	MD1	MD0	Reserved	
00003Fн	R/W 0		R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	-	Read/write Initial value
PPG01/PPG23/PPG45 (PPG0 to PPG5 output control register)									
000040н	7	6	5	4	3	2	1	0	
000040н	PCS2	PCS1	PCS0	PCM2	PCM1	PCM0	Reserved	Reserved	
000044н	R/W 0	Read/write Initial value							
PPLL0 to PPLI	_5 (Relo	ad regi	ster L)						
00002Ен	7	6	5	4	3	2	1	0	
000030н 000032н	D07	D06	D05	D04	D03	D02	D01	D00	
000032н 000034н 000036н 000038н	R/W X	Read/write Initial value							
PPLH0 to PPL	H5 (Rel	oad rea	ister H)						
00002Fн	15	14	13	12	11	10	9	8	
000031н	D15	D14	D13	D12	D11	D10	D09	D08	
000033н	R/W	Read/write							
000035н 000037н 000039н	X	X	X	X	X	X	X	X	Initial value

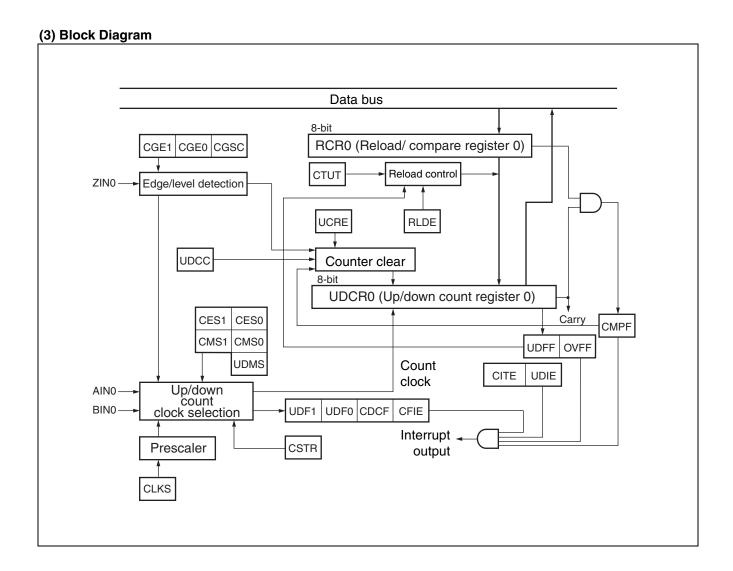
(2) Block Diagram

•8-bit PPG ch.0/2/4 block Diagram

6. 8/16-bit up/down Counter/Timer

8/16-bit up/down counter/timer consists of up/down counter/timer circuits including six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, as well as the related control circuits.

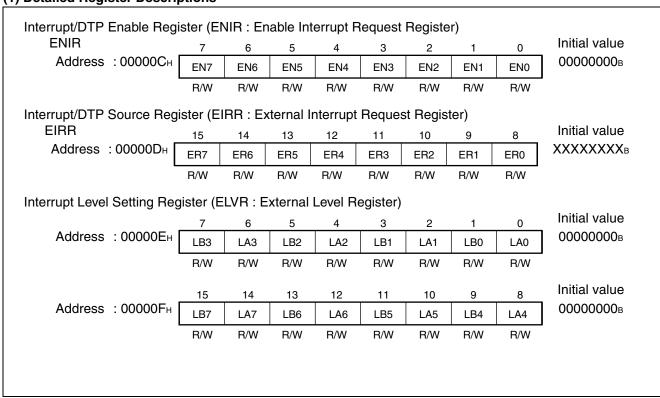
(1) Principal Function	
_	renables counting in the range 0 to 256.
	e, counting is enabled in the range 0 to 65535)
Count modes	ion provides four count modes.
-	—— Up/down count mode
_	—— Phase differential down count mode ($ imes$ 2)
	Phase differential down count mode (\times 8)
• In timer mode, the	re is a choice of two internal count clock signals.
Count clock	125 ns (8 MHz : ×2)
(at 16 MHz operation	n)
• In up/down count r	node, there is a choice of trigger edge detection for the input signal from external pins.
Edge detection ——	Falling edge detection
	Rising edge detection
	Both rising/falling edge detection
	Edge detection disabled
Z-phase are each i	al count mode, to handle encoder counting for motors, the encoder A-phase, B-phase, and nput, enabling easy and highly accurate counting of angle of rotation, speed of rotation, etc. es a selection of two functions.
ZIN pin	Counter clear function
	Gate functions
·	n and reload function are provided, each for use separately or in combination. Both functions ogether for up/down counting in any desired bandwidth.
Compare/reload fund	ction ———— Compare function (output interrupt at compare events)
	Compare function (output interrupt and clear counter at compare events)
	Reload function (output interrupt and reload at underflow events)
	Compare/reload function
	(output interrupt and clear counter at compare events, output interrupt and reload at underflow events)
	Compare/reload disabled
 Individual control of 	over interrupts at compare, reload (underflow) and overflow events.

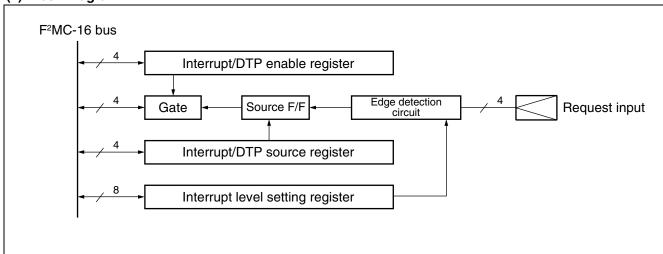

• Count direction flag enables identification of the last previous count direction.

• Interrupt generated when count direction changes.

46

(2) Register List

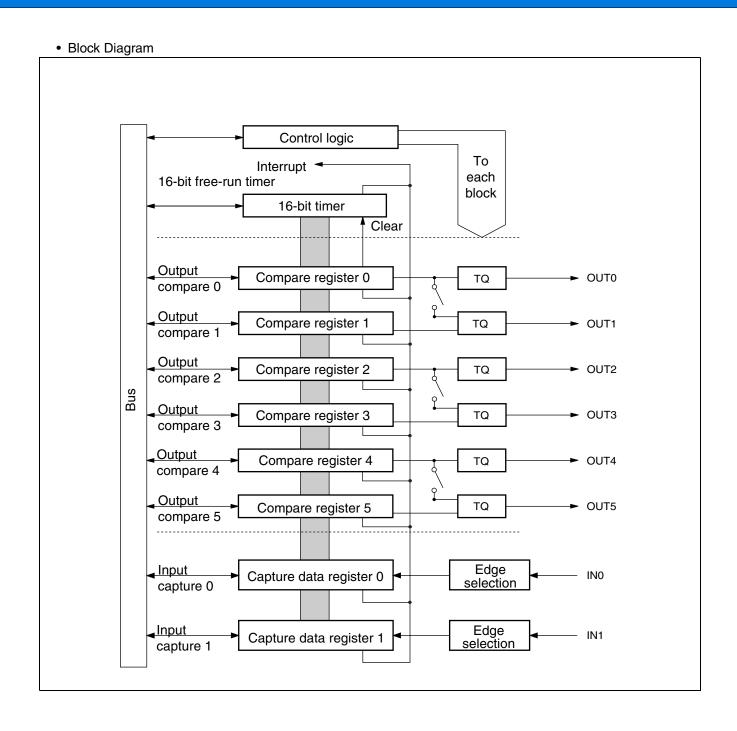

(2) Register List									
1:	5			8 7				0	
		UDCR1			ı	JDCR0			
		RCR1				RCR0			
	Rese	erved ar	ea			CSR0			
		CCRH0			(CCRL0			
	Rese	erved ar	ea			CSR1			
		CCRH1			(CCRL1			
-		- 8-bit		-		- 8-bit —		<u></u>	
CCRH0 (Counter Contro	ol Register	High ch	.0)	•				•	
A -lal	15	14	13	12	11	10	9	8	Initial value
Address : 00006	M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0	0000000в
000114 (0 : 0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
CCRH1 (Counter Contro	•	•	,	4.5		4.5	•	-	Initial value
Address: 00007	15 1 н [14 CDCF	13 CEIE	12	11 CMS1	10 CMS0	9 CES1	8 CESO	-0000000B
		R/W	CFIE R/W	CLKS R/W	CMS1 R/W	CMS0 R/W	CES1 R/W	CES0 R/W	
CCRL0/1 (Counter Con	trol Registe				IT/ VV	□/ VV	⊓/ VV	Π/ ۷ ۷	
·	7	6	5	4	3	2	1	0	Initial value
Address: 000060 Address: 000070	LIDMO	CTUT	UCRE	RLDE	UDCC	CGSC	CGE1	CGE0	0Х00Х000в
Address : 00007	R/W	W	R/W	R/W	W	R/W	R/W	R/W	
CSR0/1 (Counter Status	s Register	ch.0/ch.	1)						
Address : 000072н Address : 000074н	7	6	5	4	3	2	1	0	Initial value
	I CCTD	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R	R	
UDCR0/1 (Up Down Co	unt Registe		,						Initial value
Address: 00006	15 9 _H	14	13	12	11	10	9	8	11111ai value 00000000в
7.00000	L 517	D16	D15	D14	D13	D12	D11	D10	30000000
	R	R	R	R	R	R	R	R	
	7	6	5	4	3	2	1	0	Initial value
Address: 00006	8н 🛮 🖂 🗀 🗀 Т	D06	D05	D04	D03	D02	D01	D00	0000000В
	R	R	R	R	R	R	R	R	
RCR0/1 (Reload/Compa	ŭ		,						Initial value
Address : 00006B	15 BH	14	13	12	11	10	9	8	Initial value] 000000008
	D17	D16	D15	D14	D13	D12	D11	D10] 33333333
	W	W	W	W	W	W	W	W	
	7	6	5	4	3	2	1	0	Initial value
Address: 00006	БА н D07	D06	D05	D04	D03	D02	D01	D00	00000000В
	W	W	W	W	W	W	W	W	



7. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the $F^2MC-16LX$ CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $F^2MC-16LX$ CPU to activate the extended intelligent $\mu DMAC$ or interrupt processing.

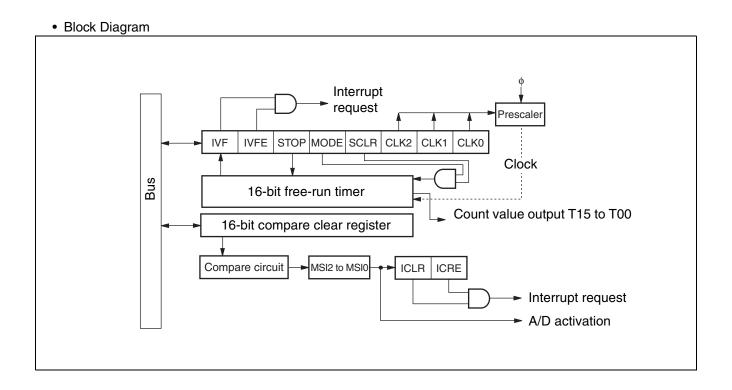
(1) Detailed Register Descriptions



8. 16-bit Input/Output Timer

The 16-bit input/output timer module is composed of one 16-bit free-run timer, six output compare and two input capture modules. These functions can be used to output six independent wave form based on the 16-bit free-run timer, enabling input pulse width measurement and external clock frequency measurement.

Register List				
16-bit free-run ti	mer			
_	15	0_		
000066/67н	CPCLR	Compare-clear register		
000062/63н	TCDT	Timer counter data register		
000064/65н	TCCS	Timer counter control status		
		─ register		
16-bit output co	mpare			
	15	0		
00004A/4C/4E/50/52/5 00004B/4D/4F/51/53/5		Output compare registers		
000040/40/47/51/55/3	DOH [
000056/58/5	БАн Г	Output compare control		
000057/59/5	OCS1/3/5 OCS0/2/4	registers		
 16-bit input capt 	ure			
	15	0		
00005C/5	EH IPCP0 IPCP1	Input capture data		
00005D/8	5FH L	——— registers		
		Input capture control status		
00000	60H ICS01	register		
		. 39.0.0.		

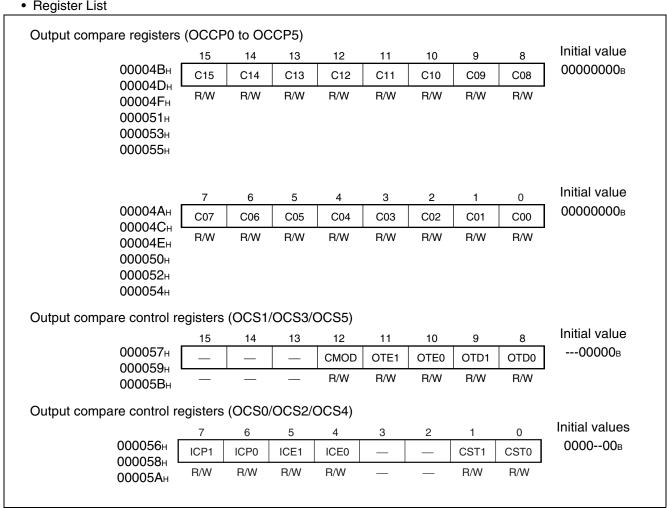

(1) 16-bit Free Run Timer

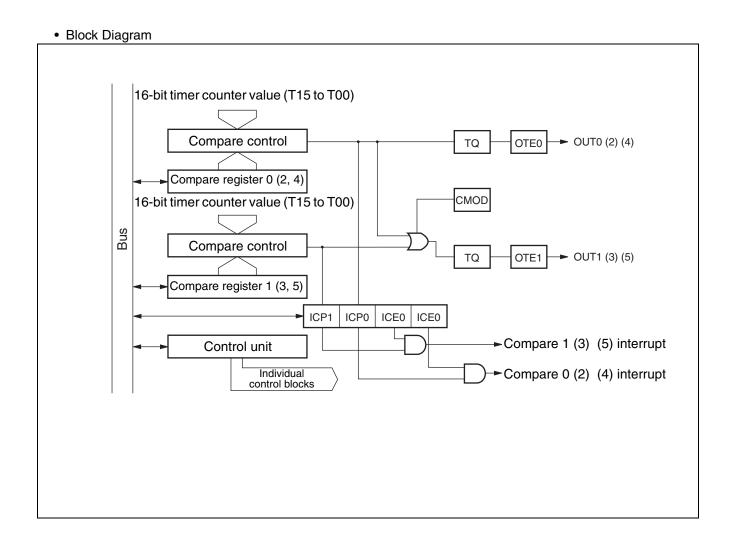
The 16-bit free-run timer is composed of a 16-bit up-down counter and control status register.

The counter value of this timer is used as the base timer for the input capture and output compare.

- The counter operation provides a choice of eight clock types.
- A counter overflow interrupt can be produced.
- A mode setting is available to initialize the counter value whenever the output compare value matches the value in the compare clear register.

Register List Compare clear register (CPCLR) Initial value 14 13 12 10 9 8 11 000067н XXXXXXXXB CL15 CL14 CL13 CL12 CL11 CL10 CL09 CL08 R/W R/W R/W R/W R/W R/W R/W R/W Initial value 7 6 5 4 3 2 1 0 000066н XXXXXXXXB CL03 CL02 CL01 CL07 CL06 CL05 CL04 CL00 R/W R/W R/W R/W R/W R/W R/W R/W Timer counter data register (TCDT) Initial value 10 9 8 15 14 13 12 11 000063н 0000000В T15 T14 T13 T12 T11 T10 T09 T08 R/W R/W R/W R/W R/W R/W R/W R/W Initial value 7 6 5 4 3 2 1 0 000062н 0000000B T07 T06 T05 T04 T03 T02 T01 T00 R/W R/W R/W R/W R/W R/W R/W R/W Timer counter control status register (TCCS) Initial value 15 13 9 8 12 11 10 000065н 0--00000в **ICLR ECKE** MSI2 MSI1 MSI0 **ICRE** R/W R/W R/W R/W R/W R/W R/W R/W Initial value 5 3 2 0 7 6 4 1 000064н 0000000B IVF **IVFE STOP** MODE **SCLR** CLK2 CLK1 CLK0 R/W R/W R/W R/W R/W R/W R/W R/W

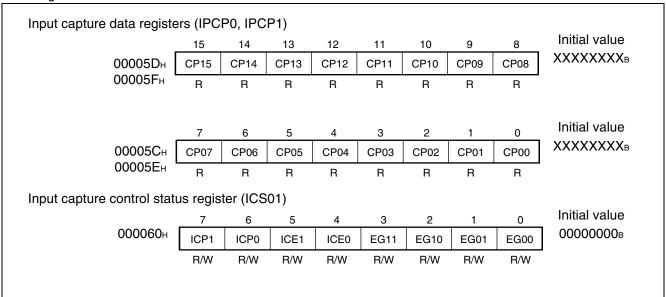



(2) Output Compare

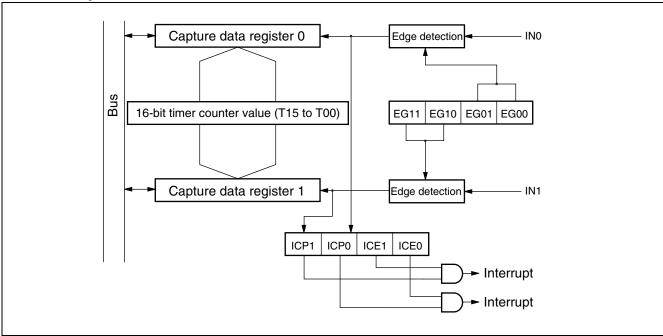
The output compare module is composed of a 16-bit compare register, compare output pin unit, and control register. When the value in the compare register in this module matches the 16-bit free-run timer, the pin output levels can be inverted and an interrupt generated.

- There are six compare registers in all, each operating independently. A setting is available to allow two compare registers to be used to control output.
- Interrupts can be set in terms of compare match events.

• Register List


(3) Input Capture

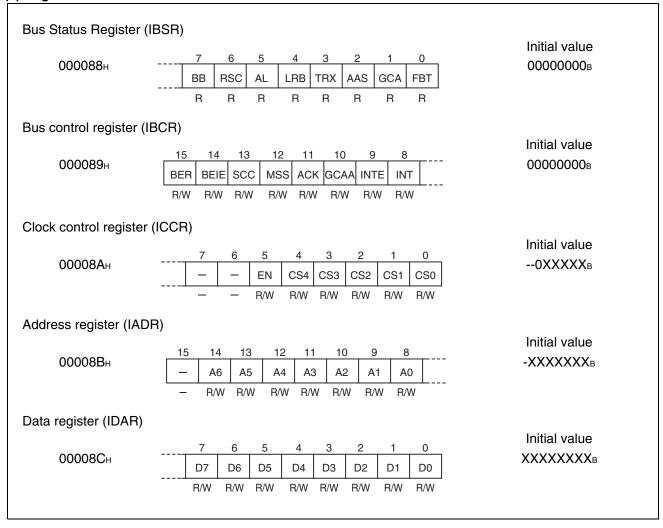
The input capture module performs the functions of detecting the rising edge, falling edge, or both edges of signal input from external circuits, and saving the 16-bit free-run timer value at that moment to a register. An interrupt can also be generated at the instant of edge detection.

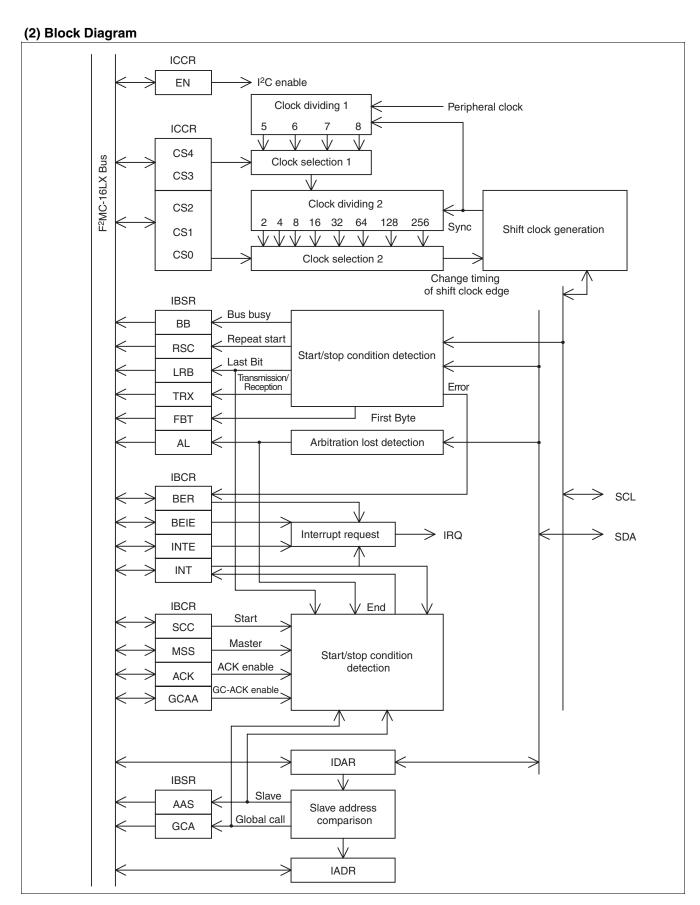

The input capture module consists of input capture registers and a control register. Each input capture module has its own external input pin.

- Selection of three types of valid edge for external input signals. Rising edge, falling edge, both edges.
- An interrupt can be generated when a valid edge is detected in the external input signal.

• Register List

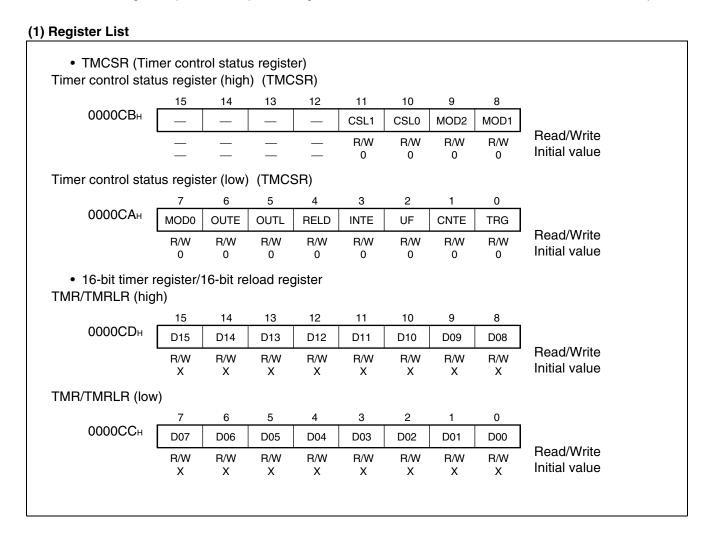
• Block Diagram

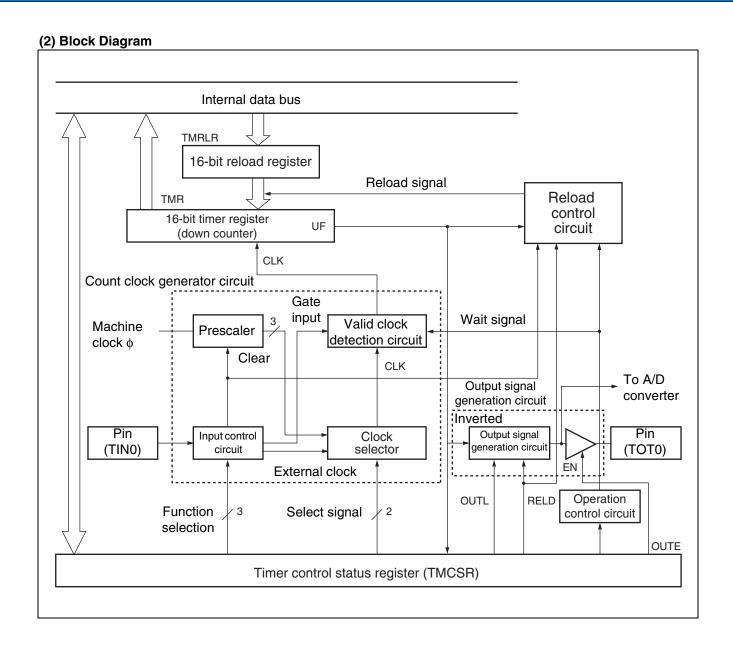



9. I²C Interface (MB90485B series only)

The I^2C interface is a serial I/O port supporting the Inter IC BUS. Serves as a master/slave device on the I^2C bus. The I^2C interface has the following functions.

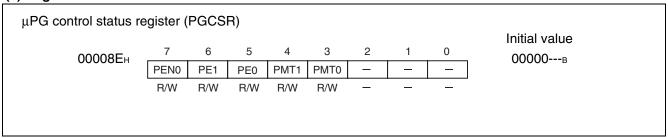
- Master/slave transmit/receive
- Arbitration function
- Clock synchronization
- Slave address/general call address detection function
- Forwarding direction detection function
- Start condition repeated generation and detection
- Bus error detection function

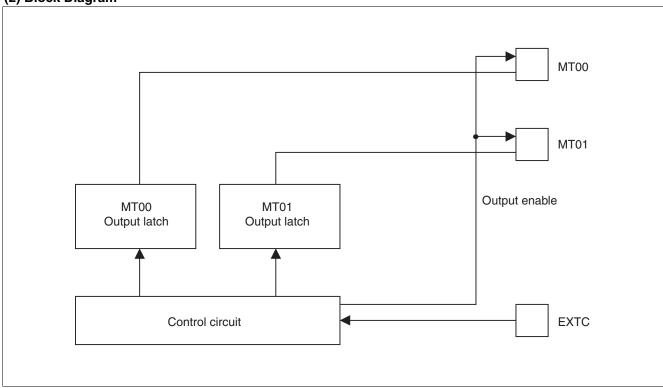

(1) Register List



10. 16-bit Reload Timer

The 16-bit reload timer provides a choice of functions, including internal clock signals that count down in synchronization with three types of internal clock, as well as an event count mode that counts down at specified edge detection events in pulse signals input from external pins. This timer defines an underflow as a change in count value from 0000_H to FFFFH. Thus an underflow will occur when counting from the value "reload register setting value + 1". The choice of counting operations includes reload mode, in which the count setting values is reloaded and counting continues following an underflow event, and one-shot mode, in which an underflow event causes counting to stop. An interrupt can be generated at counter underflow, and the timer is DTC compatible.





11. μ PG Timer (MB90485B series only)

The μPG timer performs pulse output in response to the external input.

(1) Register List

12. PWC Timer (MB90485B series only)

The PWC timer is a 16-bit multifunction up-count timer capable of measuring the pulse width of the input signal. A total of three channels are provided, each consisting of a 16-bit up-count timer, an input pulse divider & divide ratio control register, a measurement input pin, and a 16-bit control register. These components provide the following functions.

Timer function: • Capable of generating an interrupt request at fixed intervals specified.

• The internal clock used as the reference clock can be selected from among three types.

- Pulse width measurement function: Measures the time between arbitrary events based on external pulse
 - The internal clock used as the reference clock can be selected from among three types.
 - · Measurement modes
 - "H" pulse width (\uparrow to \downarrow) /"L" pulse width (\uparrow to \downarrow)
 - Rising cycle (↑ to ↑) /Falling cycle (↓ to ↓)
 - Measurement between edges (\uparrow or \downarrow to \downarrow or \uparrow)
 - The 8-bit input divider can be used for division measurement by dividing the input pulse by $22 \times n$ (n = 1, 2, 3, 4).
 - An interrupt can be generated upon completion of measurement.
 - One-time measurement or fast measurement can be selected.

(1) Register list

PWC control/status registers	(PWCSR0 to PWCSR2)
------------------------------	--------------------

000077н 15 14 13 12 11 10 9 00007Вн STRT STOP EDIR EDIE **OVIR** OVIE ERR Reserved 00007Fн R/W R/W R/W R/W R/W

Initial value 000000XB

PWC control/status registers (PWCSR0 to PWCSR2)

000076н 00007Ан 00007Ен

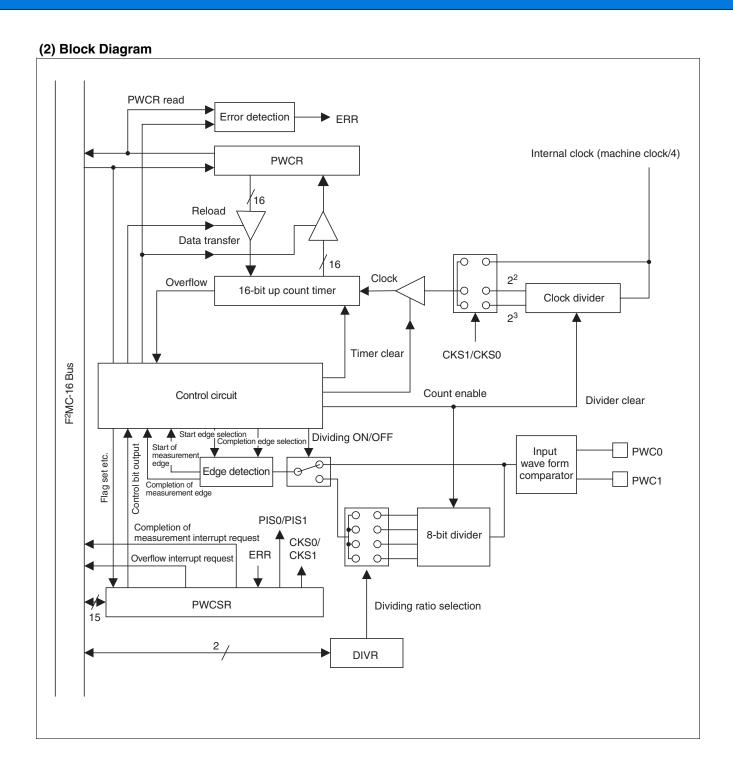
6 5 4 3 2 1 0 PIS0 CKS1 CKS0 PIS1 S/C MOD2 MOD1 MOD0 R/W R/W R/W R/W R/W R/W R/W R/W

Initial value 00000000B

PWC data buffer registers (PWCR0 to PWCR2)

000079н 00007Dн 000081н

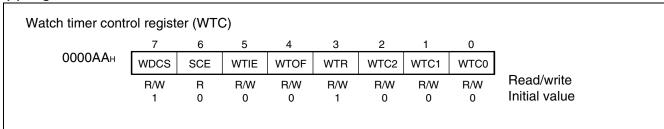
15 13 12 10 8 14 11 9 D15 D13 D12 D11 D10 D14 D9 D8 R/W R/W R/W R/W R/W R/W R/W R/W Initial value 00000008

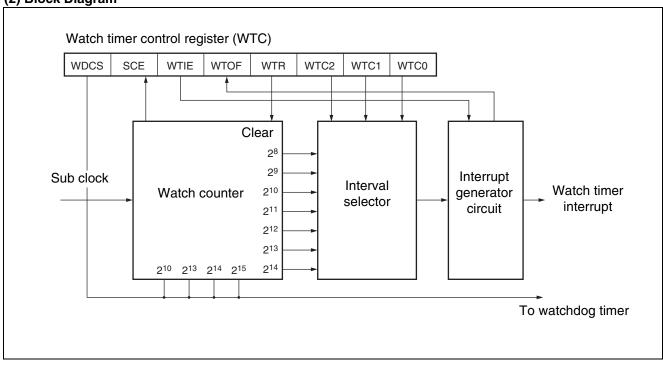

PWC data buffer registers (PWCR0 to PWCR2)

000078н 00007Сн 000080н

7 5 4 3 2 0 6 1 D4 D3 D2 D1 D7 D6 D5 D0 R/W R/W R/W R/W R/W R/W R/W R/W Initial value 00000000B

Dividing ratio control registers (DIVR0 to DIVR2)

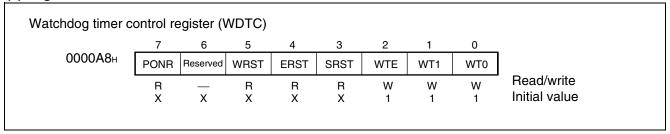

000082н 000084н 000086н 7 6 5 4 3 2 1 0 - - - - - DIV1 DIV0 - - - - - - B/W B/W Initial value

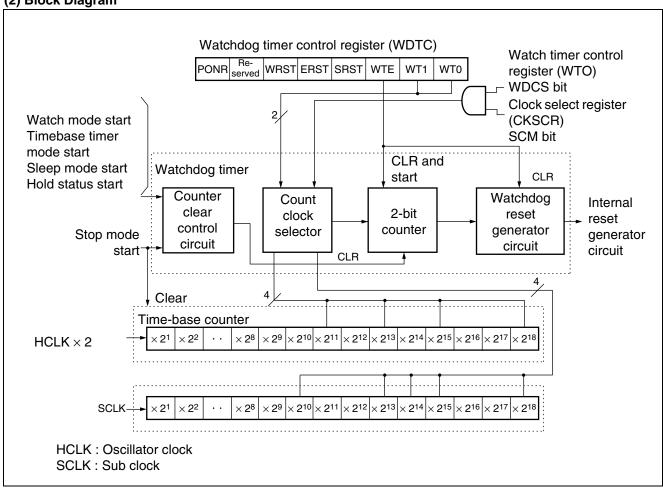


13. Watch Timer

The watch timer is a 15-bit timer using the sub clock. This circuit can generate interrupts at predetermined intervals. Also a setting is available to enable it to be used as the clock source for the watchdog timer.

(1) Register List

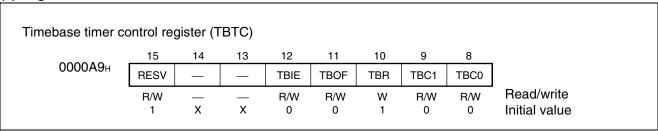


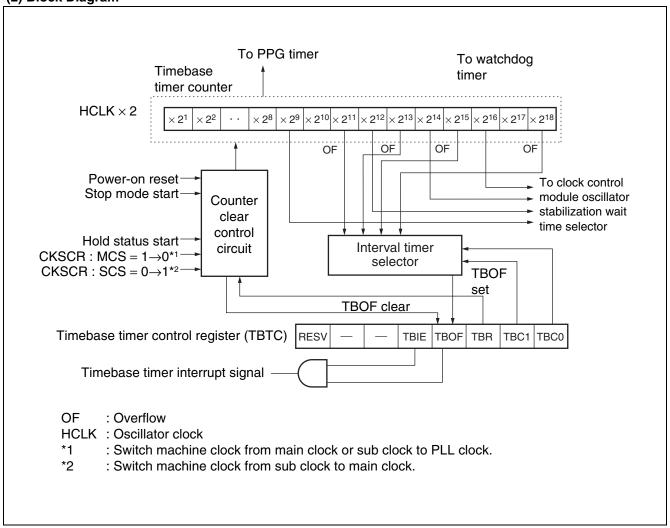


14. Watchdog timer

The watchdog timer is a 2-bit counter that uses the output from the timebase timer or watch timer as a count clock signal, and will reset the CPU if not cleared within a predetermined time interval after it is activated.

(1) Register List

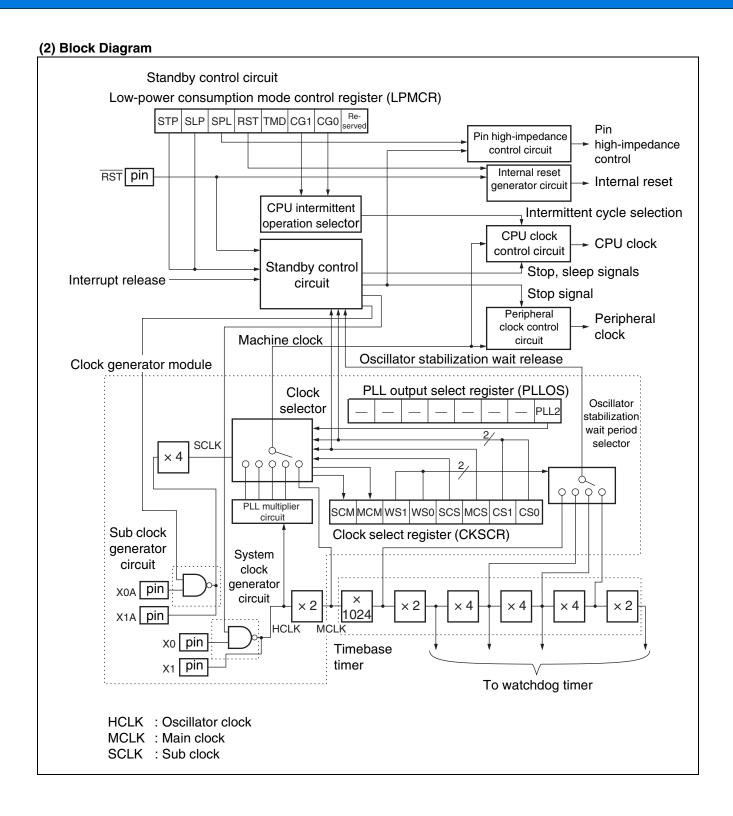


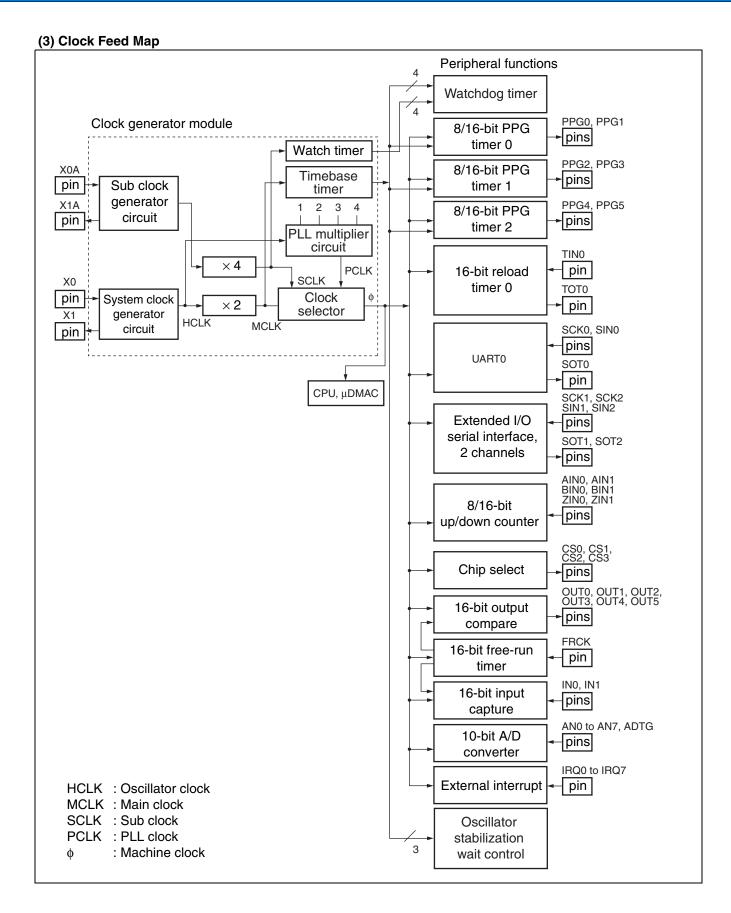


15. Timebase Timer

The timebase timer is an 18-bit free run counter (timebase counter) that counts up in synchronization with the internal count clock signal (base oscillator \times 2), and functions as an interval timer with a choice of four types of time intervals. Other functions provided by this module include timer output for the oscillator stabilization wait period, and operating clock signal feed for other timer circuits such as the watchdog timer.

(1) Register List

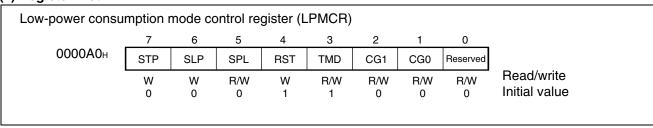


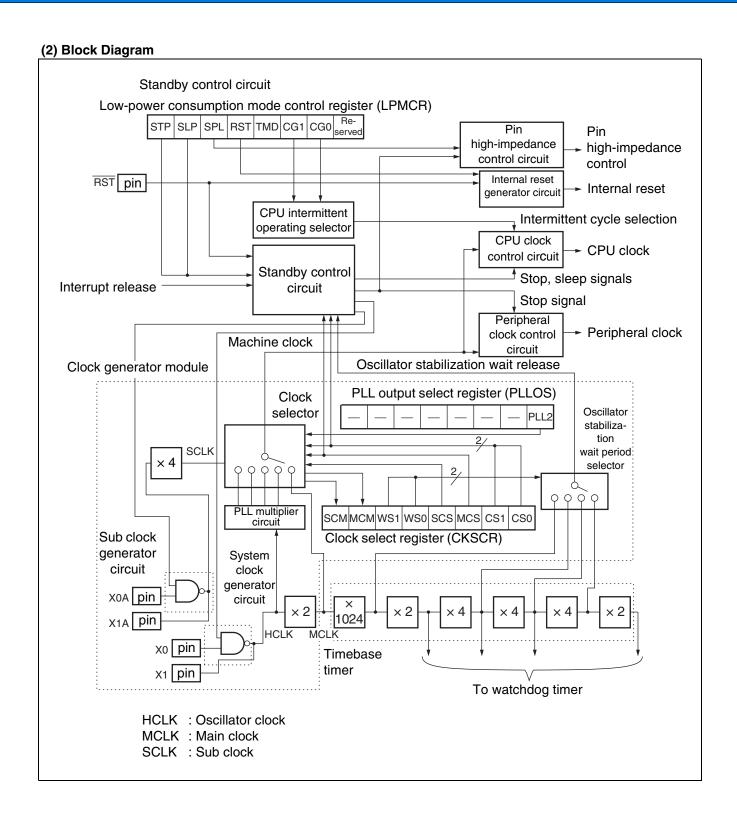


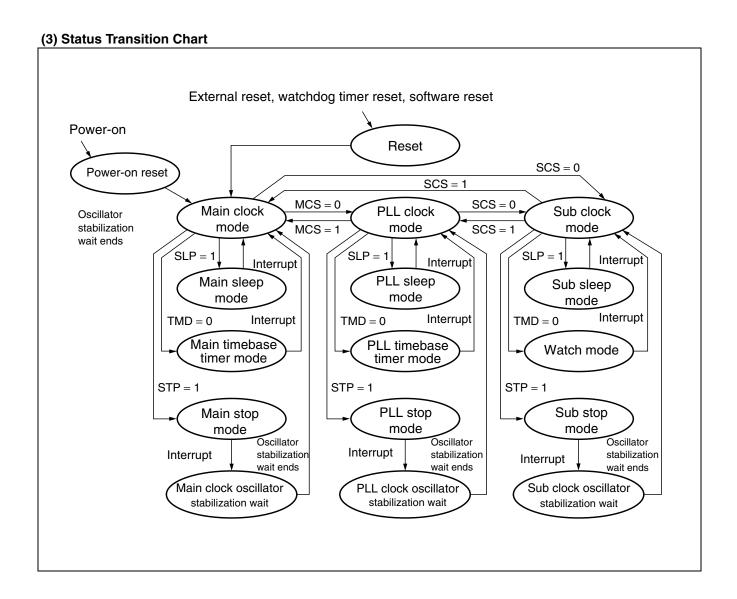
16. Clock

The clock generator module controls the operation of the internal clock circuits that serve as the operating clock for the CPU and peripheral devices. This internal clock is referred to as the machine clock, and one cycle is referred to as a machine cycle. Also, the clock signals from the base oscillator are called the oscillator clock, and those from the PLL oscillator are called the PLL clock.

(1) Register List Clock select register (CKSCR) 15 13 12 11 10 9 8 0000А1н SCM WS1 WS0 SCS CS1 MCM MCS CS0 Read/write R R/W R/W R/W R/W R/W R/W R Initial value 1 1 1 1 0 0 1 1 PLL output select register (PLLOS) 8 10 0000CFн PLL2 Read/write W W Initial value Χ 0

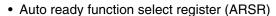


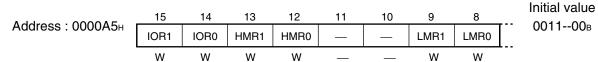

17. Low-power Consumption Mode


The MB90480B/485B series uses operating clock selection and clock operation controls to provide the following CPU operating modes :

- Clock modes
 - (PLL clock mode, main clock mode, sub clock mode)
- CPU intermittent operating modes
 - (PLL clock intermittent mode, main clock intermittent mode, sub clock intermittent mode)
- · Standby modes
 - (Sleep mode, timebase timer mode, stop mode, watch mode)

(1) Register List

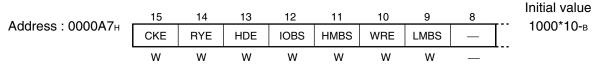




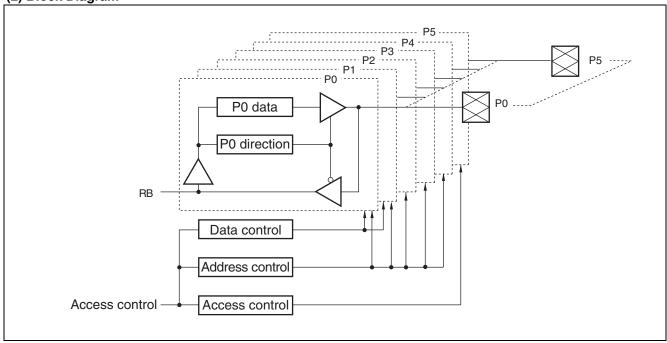
18. External Bus Pin Control Circuit


The external bus pin control circuit controls the external bus pins used to expand the CPU address/data bus connections to external circuits.

(1) Register List



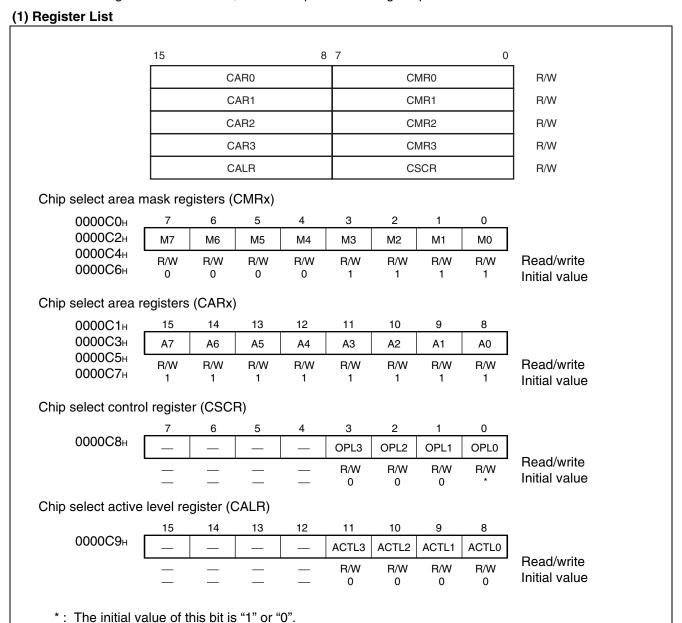
• External address output control register (HACR)

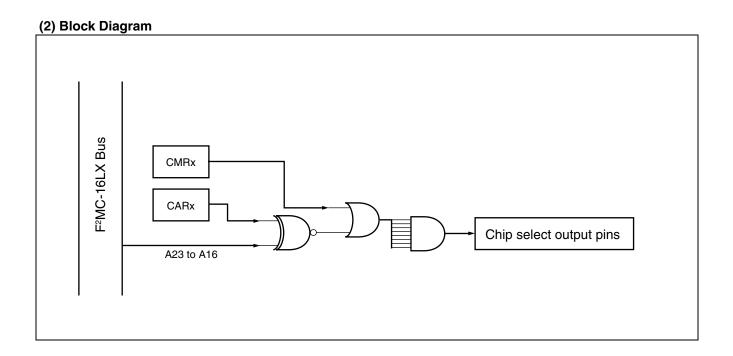

• Bus control signal select register (EPCR)

W : Write onlyNot used

* : May be either "1" or "0"

19. Chip Select Function Description

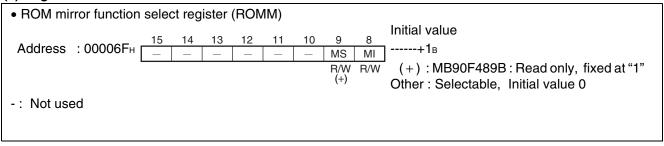

The chip select module generates a chip select signals, which are used to facilitate connections to external memory devices. The MB90480B/485B series has four chip select output pins, each having a chip select area register setting that specifies the corresponding hardware area and select signal that is output when access to the corresponding external address is detected.

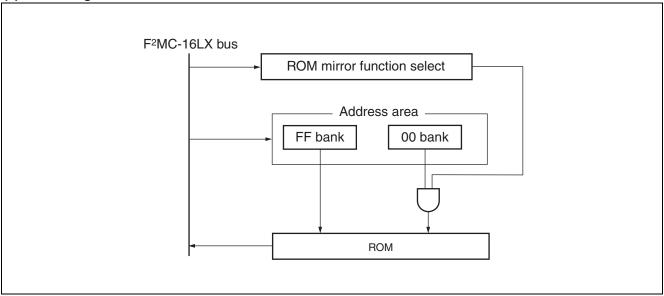

• Chip select function features

The chip select function uses two 8-bit registers for each output pin. One of these registers (CARx) is able to detect memory areas in 64 Kbytes units by specifying the upper 8-bit of the address for match detection. The other register (CMRx) can be used to expand the detection area beyond 64 Kbytes by masking bits for match detection.

Note that during external bus holds, the CS output is set to high impedance.

The value depends on the mode pin (MD2, MD1 and MD0).

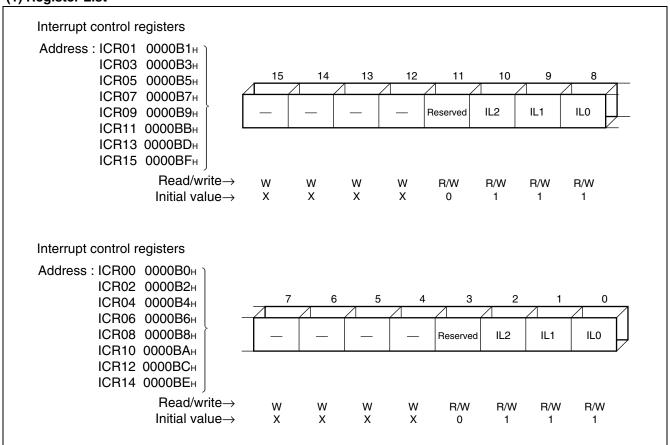



20. ROM Mirror Function Select Module

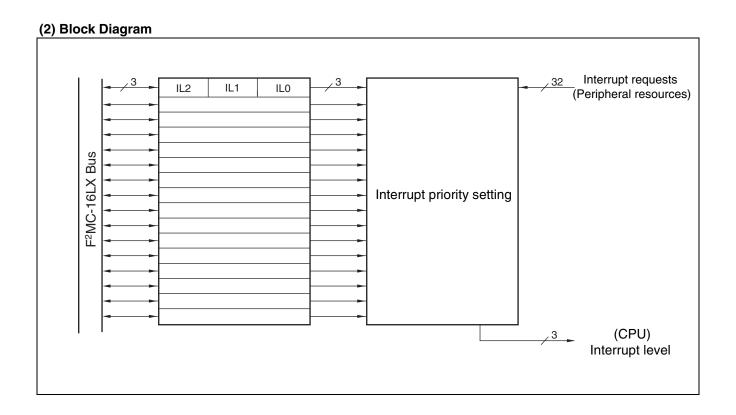
The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

(1) Register List

(2) Block Diagram


Note: Do not access ROM mirror function selection register (ROMM) on using the area of address 004000H to 00FFFFH (008000H to 00FFFFH).

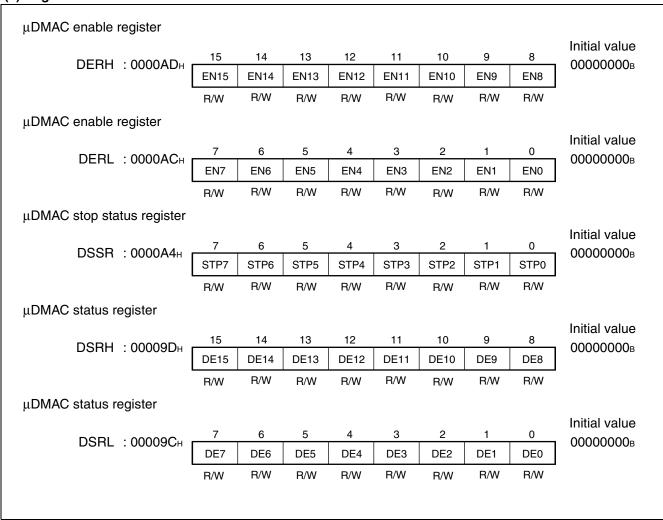
21. Interrupt Controller

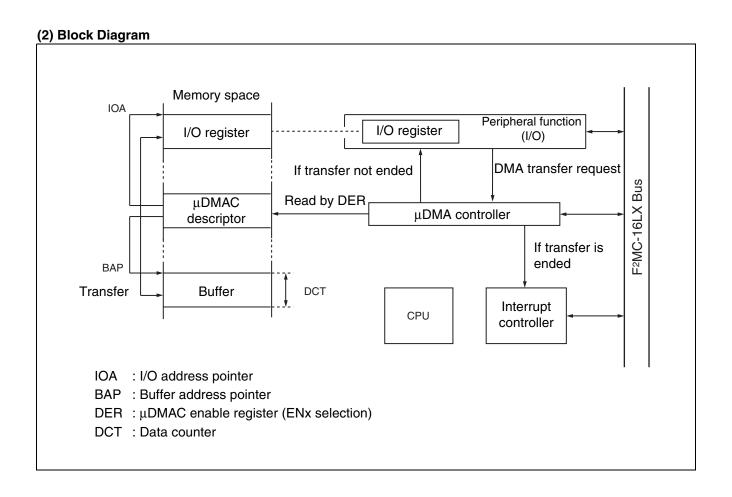

The interrupt control register is built in interrupt controller, and is supported for all I/O of interrupt function. This register sets corresponding peripheral interrupt level.

(1) Register List

avoided.

Note: The use of access involving read-modify-write instructions may lead to abnormal operation, and should be

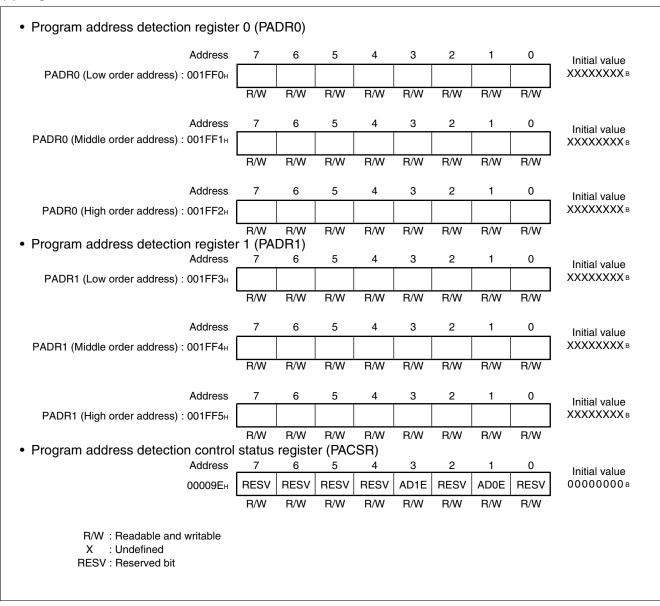



22. μ**DMAC**

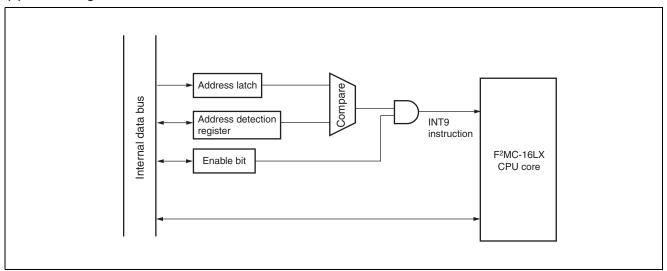
The μ DMAC is a simplified DMA module with functions equivalent to El²OS. The μ DMAC has 16 DMA data transfer channels, and provides the following functions.

- Automatic data transfer between peripheral resources (I/O) and memory.
- CPU program execution stops during DMA operation.
- · Incremental addressing for transfer source and destination can be turned on/off.
- DMA transfer control from the μDMAC enable register, μDMAC stop status register, μDMAC status register, and descriptor.
- Stop requests from resources can stop DMA transfer.
- When DMA transfer is completed, the μDMAC status register sets a flag in the bit for the corresponding channel on which transfer was completed, and outputs a completion interrupt to the interrupt controller.

(1) Register List



23. Address Match Detection Function


When the address is equal to a value set in the address detection register, the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code (01H). As a result, when the CPU executes a set instruction, the INT9 instruction is executed. Processing by the INT#9 interrupt routine allows the program patching function to be implemented.

Two address detection registers are supported. An interrupt enable bit is prepared for each register. If the value set in the address detection register matches an address and if the interrupt enable bit is set at "1", the instruction code loaded into the CPU is replaced forcibly with the INT9 instruction code.

(1) Register List

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ting	Unit	Remarks
Parameter	Syllibol	Min	Max	Oilit	nemarks
	Vcc3	Vss - 0.3	Vss + 4.0	V	
Power supply voltage*1	Vcc5	Vss - 0.3	Vss + 7.0	V	
Fower supply voltage	AVcc	Vss - 0.3	Vss + 4.0	V	*2
	AVRH	Vss - 0.3	Vss + 4.0	V	*2
Input voltage*1	Vı	Vss - 0.3	Vss + 4.0	V	*3
input voitage	VI	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*3
Output voltage	VO	Vss - 0.3	Vss + 7.0	V	*3, *8, *9
Maximum clamp current	I CLAMP	-2.0	+2.0	mA	*7
Total maximum clamp current	Σ CLAMP	_	20	mA	*7
"L" level maximum output current	loL	—	10	mA	*4
"L" level average output current	lolav	_	3	mA	*5
"L" level maximum total output current	ΣΙοι	_	60	mA	
"L" level total average output current	Σ lolav	—	30	mA	*6
"H" level maximum output current	Іон	—	-10	mA	*4
"H" level average output current	Іонаv	_	-3	mA	*5
"H" level maximum total output current	ΣІон		-60	mA	
"H" level total average output current	Σ lohav	_	-30	mA	*6
Power consumption	PD	—	320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	–55	+150	°C	

^{*1 :} This parameter is based on $V_{SS} = AV_{SS} = 0.0 \text{ V}.$

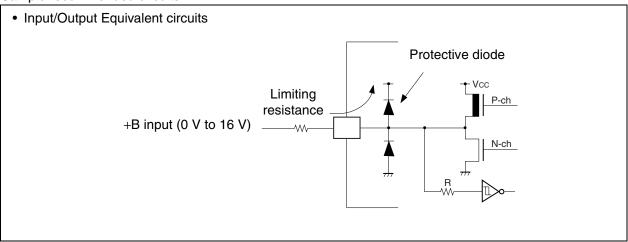
- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.

(Continued)

^{*2 :} AVcc and AVRH must not exceed Vcc. Also, AVRH must not exceed AVcc.

^{*3 :} V_I and V₀ must not exceed V_{CC} + 0.3 V. However, if the maximum current to/from and input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

^{*4 :} Maximum output current is defined as the peak value for one of the corresponding pins.


^{*5 :} Average output current is defined as the average current flow in a 100 ms interval at one of the corresponding pins.

^{*6 :} Average total output current is defined as the average current flow in a 100 ms interval at all corresponding pins.

^{*7 : •} Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA3

(Continued)

- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

*8: MB90485B series only P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin. P76 and P77 is N-ch open drain pin.

*9: As for P76 and P77 (N-ch open drain pin), even if using at 3 V simplicity (Vcc3 = Vcc5), the ratings are applied.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Cumbal	Va	lue	Unit	Remarks
Parameter	Symbol	Min	Max	Offic	nemarks
	Vcc3	2.7	3.6	V	During normal operation
Power supply veltage	VCC3	1.8	3.6	V	To maintain RAM state in stop mode
Power supply voltage	Vcc5	2.7	5.5	V	During normal operation*
	VCC3	1.8	5.5	V	To maintain RAM state in stop mode*
	Vıн	0.7 Vcc	Vcc + 0.3	V	All pins other than $V_{\text{IH2}},V_{\text{IHS}},V_{\text{IHM}}$ and V_{IHX}
"H" level input voltage	V _{IH2}	0.7 Vcc	Vss + 5.8	V	MB90485B series only P76, P77 pins (N-ch open drain pins)
l	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins
	V _{IHM}	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	VIHX	0.8 Vcc	Vcc + 0.3	V	X0A pin, X1A pin
	VıL	Vss - 0.3	0.3 Vcc	V	All pins other than VILS, VILM and VILX
"L" level input voltage	VILS	Vss - 0.3	0.2 Vcc	V	Hysteresis input pins
L level input voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILX	Vss - 0.3	0.1	V	X0A pin, X1A pin
Operating temperature	Та	-40	+85	°C	

^{*:} MB90485B series only P20 to P27, P30 to P37, P40 to P47, P70 to P77 pins can be used as 5 V I/F pin on applied 5 V to Vcc5 pin.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

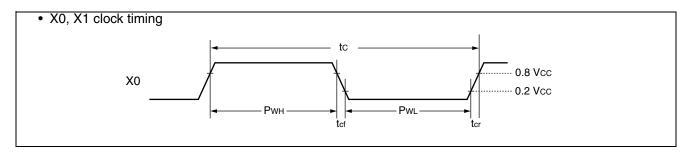
 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

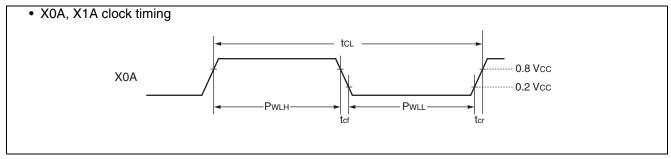
Parameter	Symbol	Pin name	Condition	V	/alue		Unit	Remarks
Parameter	Symbol	Pili lialile	Condition	Min	Тур	Max	Ollic	Remarks
"H" level	Vон	All output	Vcc = 2.7 V, Іон = -1.6 mA	Vcc3 - 0.3	_		٧	
output voltage	VOH	pins	Vcc = 4.5 V, Іон = -4.0 mA	Vcc5 - 0.5	_	_	٧	At using 5 V power supply
"L" level	Vol	All output	Vcc = 2.7 V, lo _L = 2.0 mA	_	_	0.4	٧	
output voltage	VOL	pins	Vcc = 4.5 V, Іон = 4.0 mA	_		0.4	٧	At using 5 V power supply
Input leakage current	lı∟	All input pins	Vcc = 3.3 V, Vss < V _I < Vcc	-10		+10	μА	
Pull-up resistance	RPULL	_	Vcc = 3.0 V, at T _A = +25 °C	20	53	200	kΩ	
Open drain output current	leak	P40 to P47, P70 to P77	_	_	0.1	10	μА	
	Icc		At $Vcc = 3.3 \text{ V}$, internal 25 MHz operation, normal operation	_	45	60	mA	
	ICC		At Vcc = 3.3 V, internal 25 MHz operation, Flash programming	_	55	70	mA	
	Iccs	_	At $Vcc = 3.3 V$, internal 25 MHz operation, sleep mode	_	17	35	mA	
Power supply current	Iccl	_	At $V_{CC} = 3.3 \text{ V}$, external 32 kHz, internal 8 kHz operation, sub clock operation $(T_A = +25 \text{ °C})$	_	15	140	μА	
Ісст		_	At $Vcc = 3.3 \text{ V}$, external 32 kHz, internal 8 kHz operation, watch mode ($T_A = +25 ^{\circ}C$)	_	1.8	40	μА	
	Іссн	_	$T_A = +25$ °C, stop mode, At $V_{CC} = 3.3 \text{ V}$	_	0.8	40	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	5	15	pF	

Notes : • MB90485B series only

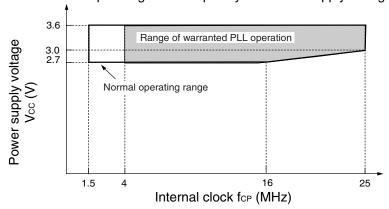
- P40 to P47 and P70 to P77 are N-ch open drain pins with control, which are usually used as CMOS.
- P76 and P77 are open drain pins without P-ch.
- For use as a single 3 V power supply products, set Vcc = Vcc3 = Vcc5.
- When the device is used with dual power supplies, P20 to P27, P30 to P37, P40 to P47 and P70 to P77 serve as 5 V pins while the other pins serve as 3 V I/O pins.

4. AC Characteristics

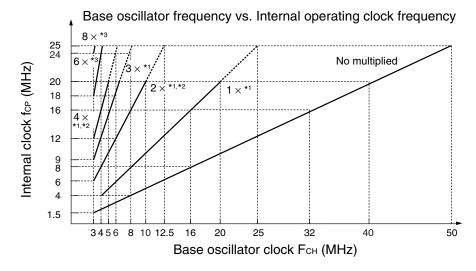

(1) Clock Timing


(Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Sym-	Pin name	Condi-		Value		Unit	Remarks		
Parameter	bol	Pili lialile	tion	Min	Тур	Max	Offic	nemarks		
				3		25		External crystal oscillator		
				3	_	50		External clock input		
				4	_	25		1 multiplied PLL		
Clock frequency	Fсн	X0, X1		3		12.5	MHz	2 multiplied PLL		
				3	_	6.66		3 multiplied PLL		
			_	3		6.25		4 multiplied PLL		
				3	_	4.16		6 multiplied PLL		
				3		3.12		8 multiplied PLL		
	FcL	X0A, X1A			32.768		kHz			
Clock cycle time	t c	X0, X1		20	_	333	ns	*1		
Olock cycle time	t cL	X0A, X1A			30.5		μs			
Input clock pulse width	P _{WH} P _{WL}	XO		5		_	ns			
input clock pulse width	Pwlh Pwll	XOA		_	15.2	_	μs	*2		
Input clock rise, fall time	t _{cr} t _{cf}	X0		_		5	ns	With external clock		
Internal operating clock	f CP	_	_	1.5	_	25	MHz	*1		
frequency	f CPL	_	_	_	8.192	_	kHz			
Internal operating clock	t cp	_	_	40.0	_	666	ns	*1		
cycle time	t CPL				122.1		μs			


^{*1 :} Be careful of the operating voltage.

^{*2 :} Duty ratio should be 50 $\% \pm 3$ %.



- Range of warranted PLL operation
 - Internal operating clock frequency vs. Power supply voltage

- Notes: For A/D operating frequency, refer to "5. A/D Converter Electrical Characteristics"
 - Only at 1 multiplied PLL, use with more than fcp = 4 MHz.

*1 : In setting as 1, 2, 3 and 4 multiplied PLL, when the internal clock is used at 20 MHz < fcp ≤ 25 MHz, set the PLLOS register to "DIV2 bit = 1" and "PLL2 bit = 1".

[Example] When using the base oscillator frequency of 24 MHz at 1 multiplied PLL:

CKSCR register : CS1 bit = "0", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

[Example] When using the base oscillator frequency of 6 MHz at 3 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

*2 : In setting as 2 and 4 multiplied PLL, when the internal clock is used at 20 MHz < fcP ≤ 25 MHz, the following setting is also enabled.

2 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "0"

PLLOS register : PLL2 bit = "1"

4 multiplied PLL: CKSCR register: CS1 bit = "0", CS0 bit = "1"

PLLOS register : PLL2 bit = "1"

*3: When using in setting as 6 and 8 multiplied PLL, set the PLLOS register to "DIV2 bit = 0" and "PLL2 bit = 1".

[Example] When using the base oscillator frequency of 4 MHz at 6 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "0" PLLOS register : PLL2 bit = "1"

[Example] When using the base oscillator frequency of 3 MHz at 8 multiplied PLL:

CKSCR register : CS1 bit = "1", CS0 bit = "1" PLLOS register : PLL2 bit = "1"

AC standards are set at the following measurement voltage values.

• Input signal wave form

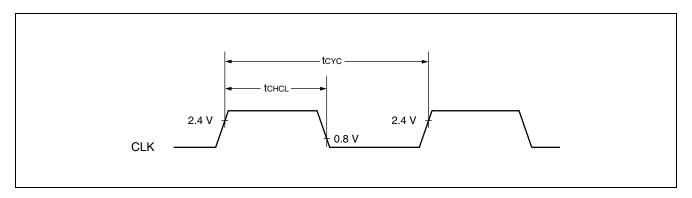
• Output signal wave form

Hysteresis input pins

0.8 Vcc
0.2 Vcc

0.8 V

• Pins other than hysteresis input/MD input

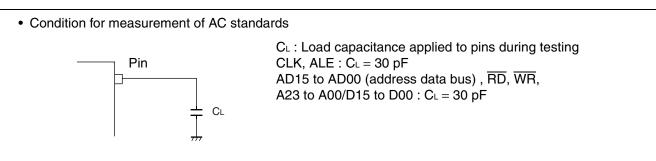

0.7 Vcc 0.3 Vcc

(2) Clock Output Timing

$$(V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$$

Parameter	Symbol Pin name		Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	Pili liaille	Conditions	Min	Max	Ollit	nemarks
Cycle time	tcyc	CLK	_	tcp*	_	ns	
			Vcc = 3.0 V to 3.6 V	tcp* / 2 - 15	tcp* / 2 + 15	ns	at fcp = 25 MHz
CLK↑→CLK↓	t chcL	CLK	Vcc = 2.7 V to 3.3 V	tcp* / 2 - 20	tcp* / 2 + 20	ns	at fcp = 16 MHz
			Vcc = 2.7 V to 3.3 V	tcp* / 2 - 64	tcp* / 2 + 64	ns	at fcp = 5 MHz

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".


(3) Reset Input Standards

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C} \text{ to } +85 \,^{\circ}\text{C})$

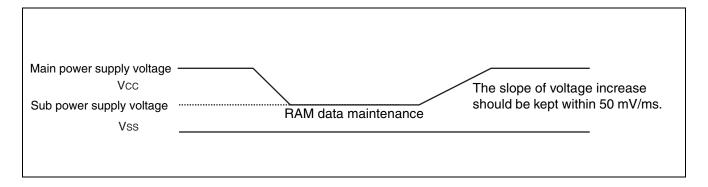
Parameter	Symbol	Pin	Condi-	Value	Unit	Remarks	
Parameter	name tions Mi		Min	Max	Ollit	Heiliaiks	
				16 tcp*1	_	ns	Normal operation
Reset input time	out time trest. RST	_	Oscillator oscillation time*2 + 4 t _{CP} *1	_	ms	Stop mode	

- *1: tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".
- *2: Oscillator oscillation time is the time to 90 % of amplitude. For a crystal oscillator this is on the order of several milliseconds to tens of milliseconds. For a ceramic oscillator, this is several hundred microseconds to several milliseconds. For an external clock signal the value is 0 ms.

(4) Power-on Reset Standards


 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

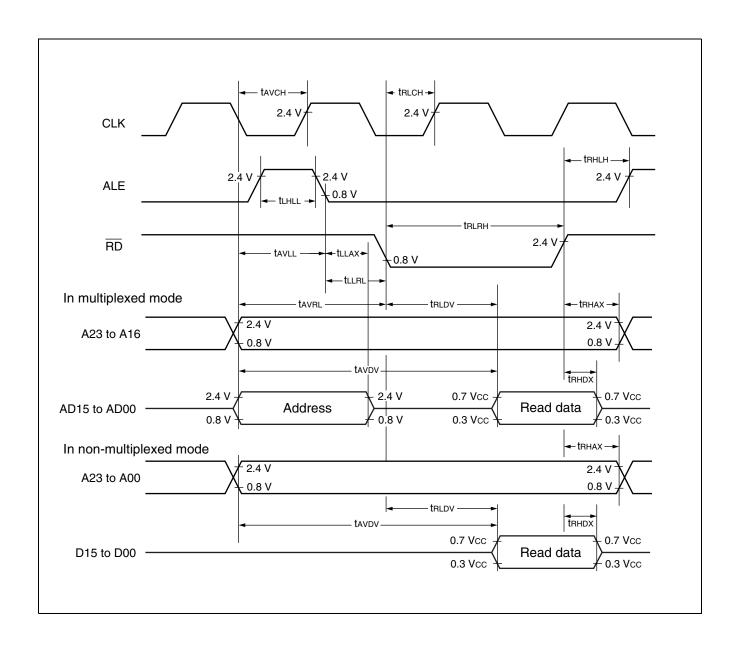
Parameter	Symbol	Pin name	Conditions -	Va	lue	Unit	Remarks
Parameter	Syllibol	r III IIailie		Min	Max		nemarks
Power rise time	t⊓	Vcc		0.05	30	ms	*
Power down time	toff	Vcc		1	_	ms	In repeated operation


^{*:} Power rise time requires $V_{\text{CC}} < 0.2 \text{ V}$.

Notes: • The above standards are for the application of a power-on reset.

• Within the device, the power-on reset should be applied by switching the power supply off and on again.

Note: Rapid fluctuations in power supply voltage may trigger a power-on reset in some cases. As shown below, when changing supply voltage during operation, it is recommended that voltage changes be suppressed and a smooth restart be applied.

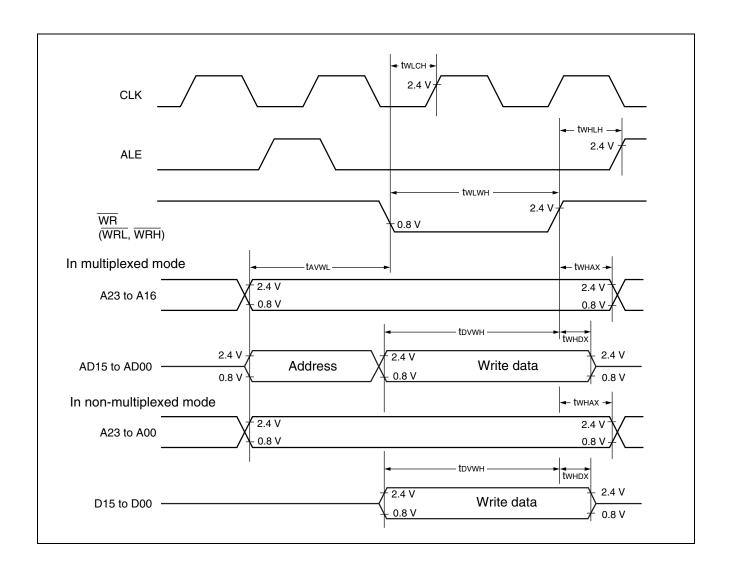


(5) Bus Read Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = 0 $^{\circ}$ C to +70 $^{\circ}$ C)

Dovometer	Cymbal	Din nome	Conditions	Va	lue	Unit	Domouleo
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks
				tcp* / 2 – 15	_	ns	16 MHz < fcp ≤ 25 MHz
ALE pulse width	t LHLL	ALE	_	tcp* / 2 – 20	_	ns	8 MHz < fcp ≤ 16 MHz
				tcp* / 2 - 35		ns	$f_{\text{CP}} \le 8 \text{ MHz}$
Valid address→	tavll	Address,		tcp* / 2 - 17		ns	
ALE↓time	L AVLL	ALE		tcp* / 2 - 40		ns	$f_{\text{CP}} \le 8 \text{ MHz}$
$ALE \downarrow \rightarrow$ address valid time	tllax	ALE, Address	_	tcp* / 2 – 15		ns	
Valid address→ RD↓time	tavrl	RD, Address	_	tcp* - 25	_	ns	
Valid address→	+	Address,			5 tcp* / 2 - 55	ns	
valid data input	tavdv	Data	_	_	5 tcp* / 2 - 80	ns	fcp ≤ 8 MHz
RD pulse width	trleh	RD		3 tcp* / 2 – 25	_	ns	16 MHz < fcp ≤ 25 MHz
D puise widin	IHLHH	ND		3 tcp* / 2 – 20	_	ns	8 MHz < fcp ≤ 16 MHz
$\overline{RD}{\downarrow}{ ightarrow}$	t _{RLDV}	RD,		_	3 tcp* / 2 - 55	ns	
valid data input	thedv	Data		_	3 tcp* / 2 - 80	ns	$f_{\text{CP}} \le 8 \text{ MHz}$
RD↑→data hold time	t RHDX	RD, Data	_	0		ns	
RD↑→ALE↑time	t RHLH	RD, ALE	_	tcp* / 2 - 15	_	ns	
RD↑→ address valid time	trhax	Address, RD	_	tcp* / 2 – 10	_	ns	
Valid address→ CLK [↑] time	tavch	Address, CLK	_	tcp* / 2 – 17	_	ns	
RD↓→CLK↑time	t RLCH	RD, CLK	_	tcp* / 2 - 17	_	ns	
ALE↓→RD↓time	t llrl	RD, ALE		tcp* / 2 - 15		ns	

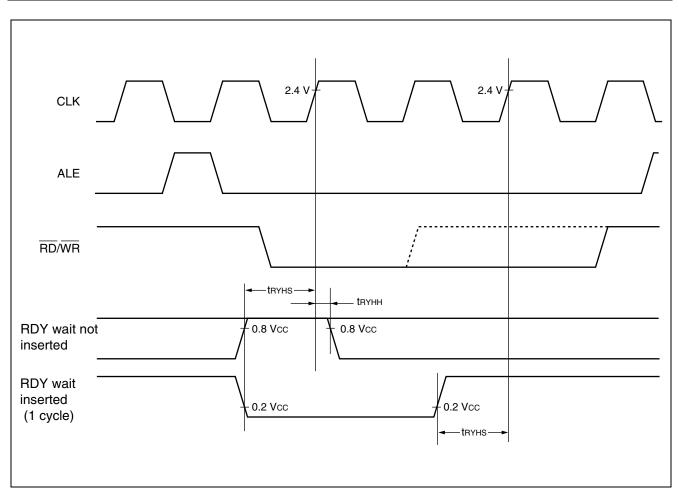
^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



(6) Bus Write Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, $T_A = 0$ °C to +70 °C)

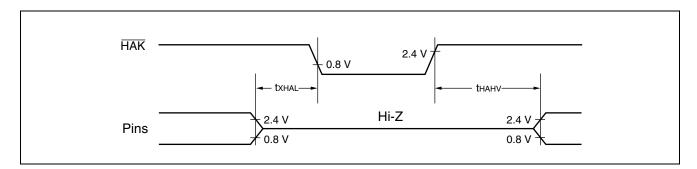
Parameter	Sym-	Pin name	Condi-	Val	ue	Heit	Domento
Farameter	bol	Pin name	tion	Min	Max	Unit	Remarks
Valid address→ WR ↓time	tavwl	Address, WR	_	tcp* - 15		ns	
WR pulse width	t.,,,,,,,,,,	WRL, WRH		3 tcp* / 2 – 25	_	ns	16 MHz < fcp ≤ 25 MHz
Wit pulse width	twLwH	VVNL, VVNN		3 tcp* / 2 – 20	_	ns	8 MHz < fcP ≤ 16 MHz
Valid data output → WR time	tovwh	Data, WR		3 tcp* / 2 - 15	_	ns	
	twhox	WR, Data	_	10	_	ns	16 MHz < fcp ≤ 25 MHz
WR↑→data hold time			_	20	_	ns	8 MHz < fcp ≤ 16 MHz
			_	30	_	ns	fcp ≤ 8 MHz
WR↑→address valid time	twhax	WR, Address	_	tcp* / 2 - 10		ns	
WR↑→ALE↑time	twhlh	WR, ALE	_	tcp* / 2 - 15	_	ns	
WR↓→CLK [↑] time	twlch	WR, CLK	_	tcp* / 2 - 17	_	ns	


^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(7) Ready Input Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = 0 $^{\circ}$ C to +70 $^{\circ}$ C)

Parameter	Parameter Symbol		Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol	Pin name	Conditions	Min	Max	Oiiit	Heiliaiks
RDY setup time tryhs	tovuo		_	35	_	ns	
	LHYHS	RDY	_	70	_	ns	at fcp = 8 MHz
RDY hold time	tпунн		_	0	_	ns	


(8) Hold Timing

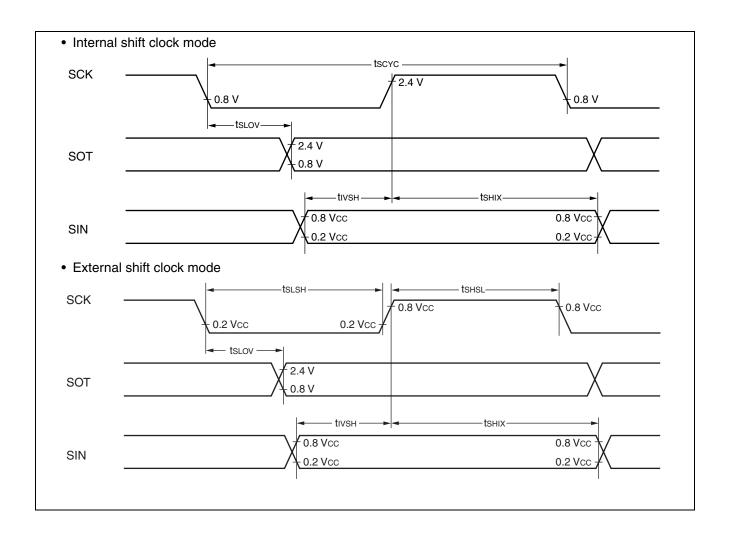
$$(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

Parameter	Symbol	Pin name	Conditions	Va	Unit	
	Syllibol	Fili liaille	Conditions	Min	Max	Offic
Pin floating→HAK↓time	txhal	HAK		30	tcp*	ns
HAK↓→pin valid time	t hahv	HAK	_	tcp*	2 tcp*	ns

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

Note: One or more cycles are required from the time the HRQ pin is read until the HAK signal changes.

(9) UART Timing


$$(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol	name	Conditions	Min	Max	Oilit	nemarks
Serial clock cycle time	tscyc		Internal shift clock mode output pins: CL*1 = 80 pF + 1 TTL	8 tcp*2		ns	
SCK↓→SOT delay time	tslov			-80	+80	ns	
30N↓→301 delay time	islov			-120	+120	ns	fcp = 8 MHz
Valid SIN→SCK↑	t			100		ns	
Valid Silv—SCK	tıvsн	_		200		ns	fcp = 8 MHz
SCK↑→valid SIN hold time	t shix	_		tcp*2		ns	
Serial clock "H" pulse width	tshsl	_		4 tcp*2		ns	
Serial clock "L" pulse width	t slsh			4 tcp*2		ns	
SCK↓→SOT delay time	to			_	150	ns	
SCK↓→SCT delay time	t slov		External shift clock	_	200	ns	fcp = 8 MHz
Valid SIN→SCK↑	t		mode output pins : $C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	60		ns	
Valid Silv—SCK	tıvsн	_	·	120		ns	fcp = 8 MHz
SCK↑→valid SIN hold time	taume			60	_	ns	
Jock 1 → valid Silv Hold time	t shix	_		120	_	ns	fcp = 8 MHz

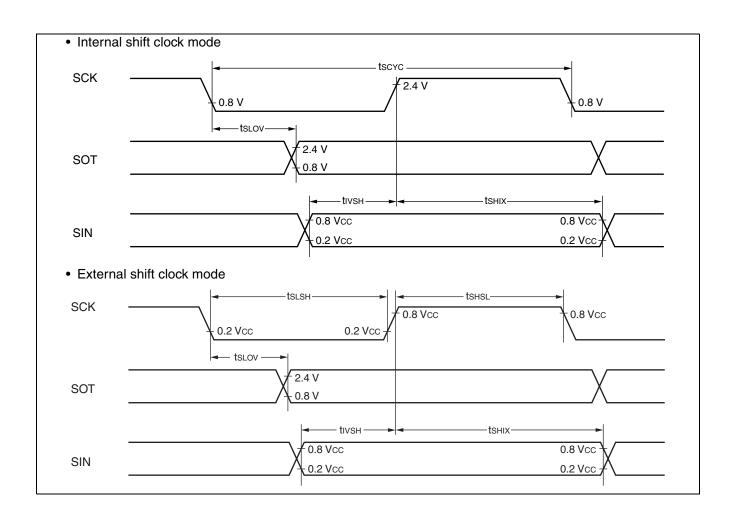
^{*1 :} C_L is the load capacitance applied to pins for testing.

Note: The above rating is in CLK synchronous mode.

^{*2 :} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(10) Extended I/O Serial Interface Timing

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

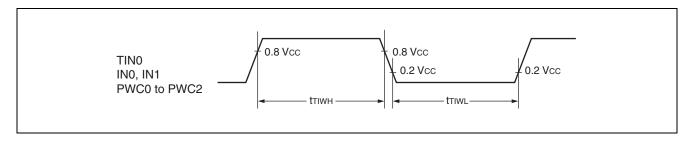

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
Farameter	Syllibol	name	Conditions	Min	Max	Oilit	nemarks
Serial clock cycle time	tscyc	_		8 tcp*2	_	ns	
SCK↓→SOT delay time	tslov			-80	+ 80	ns	
John → John delay time	tslov	_	Internal shift clock	-120	+ 120	ns	fcp = 8 MHz
Valid SIN→SCK↑	tıvsн		mode output pins : $C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	100		ns	
Valid SIN-SON	UVSH	_	,	200	_	ns	fcp = 8 MHz
SCK [↑] →valid SIN hold time	tsнıх	_		tcp*2	_	ns	
Serial clock "H" pulse width	t shsl	_		4 tcp*2	_	ns	
Serial clock "L" pulse width	t slsh	_		4 tcp*2	_	ns	
SCK↓→SOT delay time	torov			_	150	ns	
	tsLov		External shift clock mode output pins : $C_L^{*1} = 80 \text{ pF} + 1 \text{ TTL}$	_	200	ns	fcp = 8 MHz
Valid SIN→SCK↑	turou			60	_	ns	
Valid SIN→SCK	tıvsн			120	_	ns	fcp = 8 MHz
SCK↑→valid SIN hold time	tsнıx	_		60	—	ns	
JON 1 → Valla SIN Hola tillle	ISHIX			120	—	ns	fcp = 8 MHz

^{*1 :} C_L is the load capacitance applied to pins for testing.

Notes: • The above rating is in CLK synchronous mode.

• Values on this table are target values.

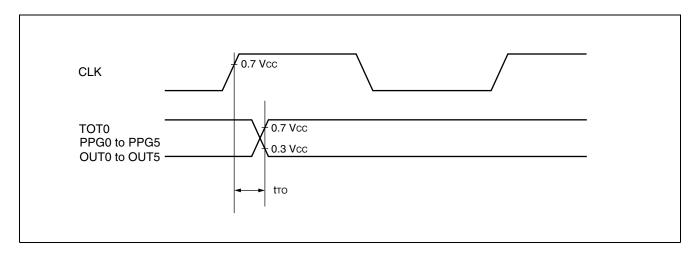
^{*2 :} tcp is internal operating clock cycle time. Refer to " (1) Clock Timing".



(11) Timer Input Timing

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter S	Symbol	Pin name	Conditions	Va	Unit	
	Symbol Pili hame		Conditions	Min	Max	Oill
Input pulse width	tтıwн tтıwL	TIN0, IN0, IN1, PWC0 to PWC2	_	4 tcp*	_	ns


^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

(12) Timer Output Timing

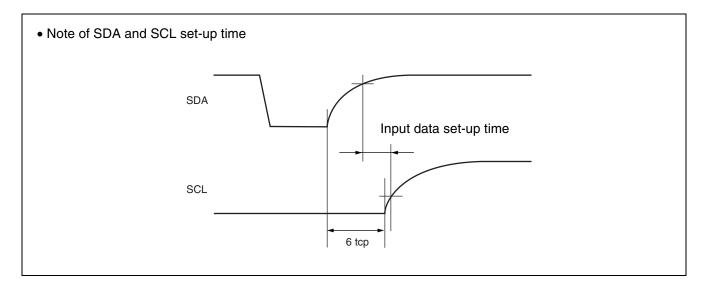
 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Value		Unit	
Parameter	Symbol	riii iiaiiie	Conditions	Min	Max	Oill	
CLK↑→Touт change time PPG0 to PPG5 change time OUT0 to OUT5 change time	tто	TOT0, PPG0 to PPG5, OUT0 to OUT5	Load conditions 80 pF	30		ns	

(13) I2C Timing

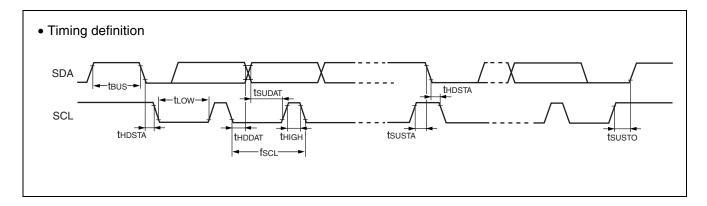
(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = -40 $^{\circ}C$ to +85 $^{\circ}C)$

Parameter	Symbol	Condition	Standar	Unit		
Parameter	Symbol	Condition	Min	Max	Jiii	
SCL clock frequency	fscL		0	100	kHz	
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	When power supply voltage of	4.0	_	μs	
"L" width of the SCL clock	tLOW	external pull-up resistance is 5.5 V $R = 1.3 \text{ k}\Omega$, $C = 50 \text{ pF}^{*2}$	4.7		μs	
"H" width of the SCL clock	tніgн	M = 1.3 kg, C = 50 pr - When power supply voltage of	4.0		μs	
Set-up time (repeated) START condition SCL↑→SDA↓	t susta	external pull-up resistance is 3.6 V R = 1.6 k Ω , C = 50 pF ^{*2}	4.7	_	μs	
Data hold time SCL↓→SDA↓↑	t hddat		0	3.45*3	μs	
Data set-up time		When power supply voltage of external pull-up resistance is 5.5 V f _{CP} *1 \leq 20 MHz, R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V f _{CP} *1 \leq 20 MHz, R = 1.6 k Ω , C = 50 pF*2	250*4		ns	
SDA↓↑→SCL↑	t sudat	When power supply voltage of external pull-up resistance is 5.5 V fcp*1 > 20 MHz, R = 1.3 k Ω , C = 50 pF*2 When power supply voltage of external pull-up resistance is 3.6 V fcp*1 > 20 MHz, R = 1.6 k Ω , C = 50 pF*2	200*4	_	ns	
Set-up time for STOP condition SCL↑→SDA↑	t susto	When power supply voltage of external pull-up resistance is 5.5 V	4.0	_	μs	
Bus free time between a STOP and START condition	t BUS	R = 1.3 kΩ, C = 50 pF* ² When power supply voltage of external pull-up resistance is 3.6 V R = 1.6 kΩ, C = 50 pF* ²	4.7	_	μs	


^{*1 :} fcp is internal operation clock frequency. Refer to " (1) Clock Timing".

Note : Vcc = Vcc3 = Vcc5

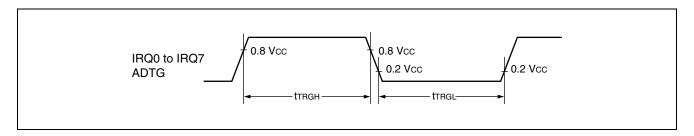
^{*2 :} R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.


^{*3 :} The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

^{*4 :} Refer to ". Note of SDA and SCL set-up time".

Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.

Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.



(14) Trigger Input Timing

 $(Vcc = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol Pin name		Conditions	Value		Unit	Remarks	
	Symbol Fill hame	Min		Max	Oiiit	nemarks		
Input pulse width	t TRGH	ADTG,		5 tcp*	_	ns	Normal operation	
	t TRGL	IRQ0 to IRQ7		1		μs	Stop mode	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

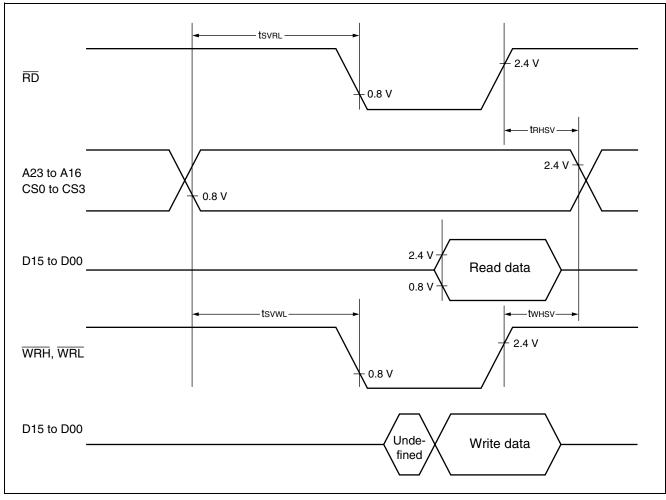


(15) Up-down Counter Timing

(Vcc = 2.7 V to 3.6 V, Vss = 0.0 V, Ta = -40 °C to +85 °C)

Davamatar	Symbol	Pin name	Conditions	Va	Value		
Parameter				Min	Max	Unit	
AIN input "H" pulse width	t ahl			8 tcp*	_	ns	
AIN input "L" pulse width	tall			8 tcp*	_	ns	
BIN input "H" pulse width	tвнг			8 tcp*	_	ns	
BIN input "L" pulse width	tBLL			8 tcp*	_	ns	
AIN↑→BIN↑ time	t aubu	AINO, AIN1, BINO, BIN1		4 tcp*	_	ns	
BIN↑→AIN↓ time	t BUAD			4 tcp*	_	ns	
AIN↓→BIN↑ time	tadbd		Load	4 tcp*	_	ns	
BIN↓→AIN↑ time	t BDAU		conditions 80 pF	4 tcp*	_	ns	
BIN↑→AIN↑ time	t BUAU		·	4 tcp*	_	ns	
AIN↑→BIN↓ time	taubd			4 tcp*	_	ns	
BIN↓→AIN↑ time	t BDAD	ZINO, ZIN1		4 tcp*	_	ns	
AIN↓→BIN↑ time	tadbu			4 tcp*	_	ns	
ZIN input "H" pulse width	tzhl			4 tcp*	_	ns	
ZIN input "L" pulse width	tzll			4 tcp*	_	ns	

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".



(16) Chip Select Output Timing

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

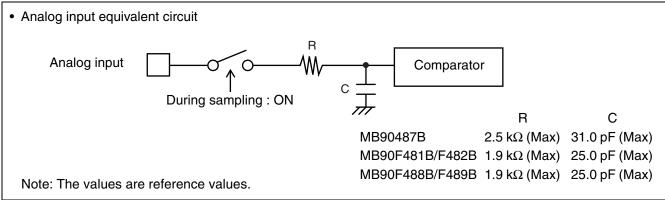
Parameter	Symbol	Pin name	Conditions	Value		Unit
raianietei	Syllibol	Fili lialile	Conditions	Min	Max	Offic
Chip select output valid time $\to \overline{RD} \downarrow$	tsvrl	CS0 to CS3, RD	_	tcp* / 2 – 7	_	ns
Chip select output valid time $\to \overline{WR} \downarrow$	t svwL	CS0 to CS3, WRH, WRL	_	tcp* / 2 – 7	_	ns
RD↑→chip select output valid time	trhsv	RD, CS0 to CS3	_	tcp* / 2 – 17	_	ns
WR↑→chip select output valid time	twnsv	WRH, WRL, CS0 to CS3	_	tcp* / 2 – 17	_	ns

^{*:} tcp is internal operating clock cycle time. Refer to "(1) Clock Timing".

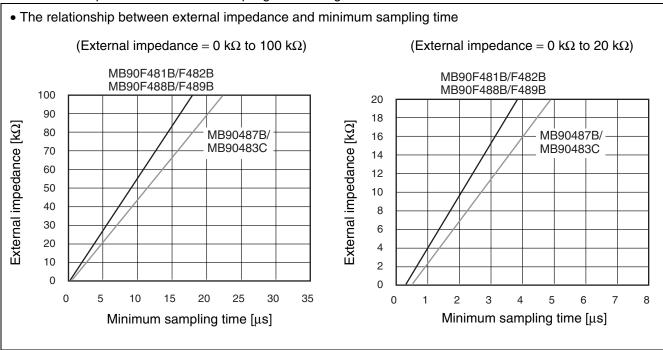
Note: Due to the configuration of the internal bus, the chip select output signals are changed simultaneously and therefore may cause the bus conflict conditions. AC cannot be warranted between the ALE output signal and the chip select output signal.

5. A/D Converter Electrical Characteristics

(Vcc = AVcc = 2.7 V to 3.6 V, Vss = AVss = 0.0 V, 2.7 V \leq AVRH, T_A = -40 °C to +85 °C)


Davameter	0	Din norse	Value				
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	
Resolution	_	_	_	_	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Linear error	_	_		_	±2.5	LSB	
Differential linearity error	_	_	_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	
Conversion time	_	_	3.68 *1	_	_	μs	
Analog port input current	lain	AN0 to AN7	_	0.1	10	μΑ	
Analog input voltage	Vain	AN0 to AN7	AVss	_	AVRH	٧	
Reference voltage	_	AVRH	AVss + 2.2	_	AVcc	V	
Davier aventu avent	lΑ	AVcc	_	1.4	3.5	mA	
Power supply current	Іан	AVcc		_	5 *²	μΑ	
Reference voltage supply	IR	AVRH	_	94	150	μΑ	
current	IRH	AVRH	_	_	5 *²	μΑ	
Offset between channels	_	AN0 to AN7	_	_	4	LSB	

^{*1 :} At machine clock frequency of 25 MHz.


^{*2 :} CPU stop mode current when A/D converter is not operating (at Vcc = AVcc = AVRH = 3.0 V).

About the external impedance of the analog input and its sampling time

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

About errors

As IAVRH – AVssl becomes smaller, values of relative errors grow larger.

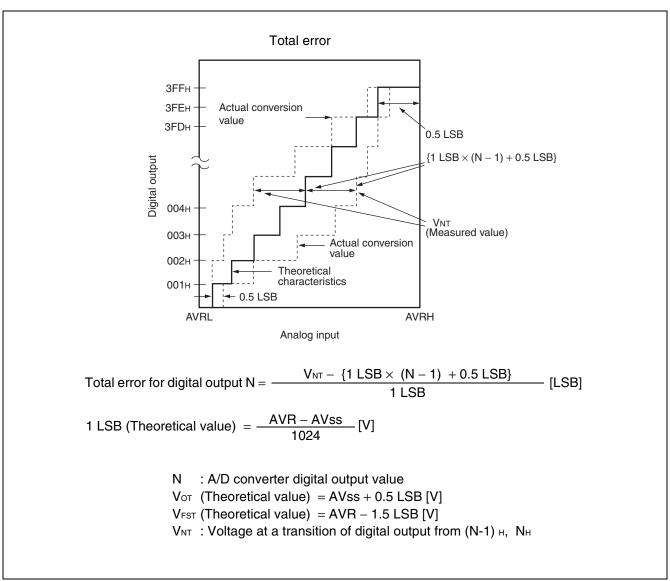
Note : Concerning sampling time, and compare time when 3.6 V \geq AV cc \geq 2.7 V, then Sampling time : 1.92 μs , compare time : 1.1 μs

Settings should ensure that actual values do not go below these values due to operating frequency changes.

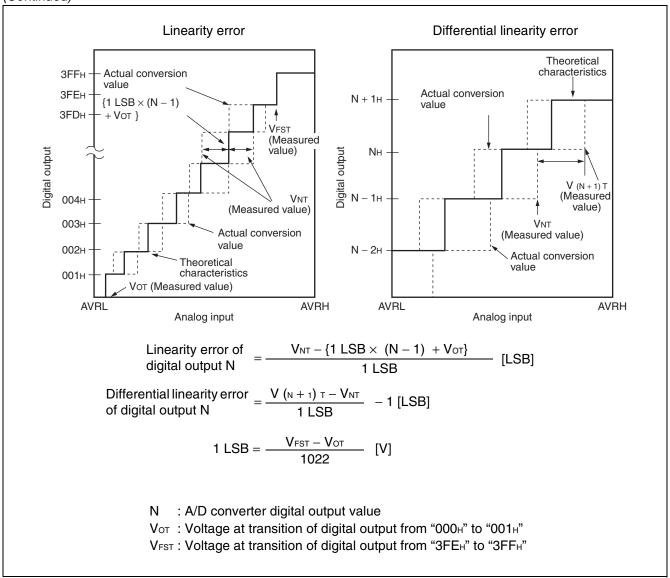
A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter.

Linearity error: The deviation of the straight line connecting the zero transition point

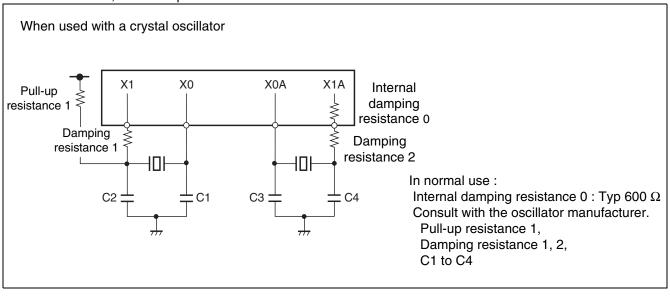

("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics.

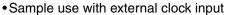
Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the

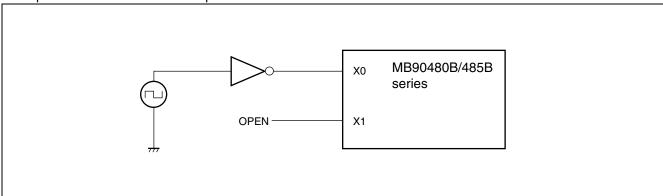

theoretical value.

Total error: The total error is defined as a difference between the actual value and the theoretical

value, which includes zero-transition error/full-scale transition error and linearity error.

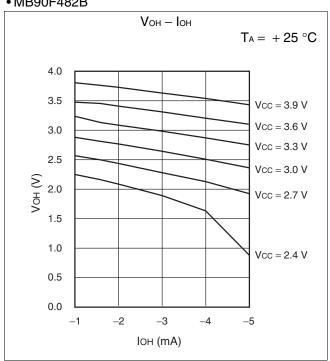


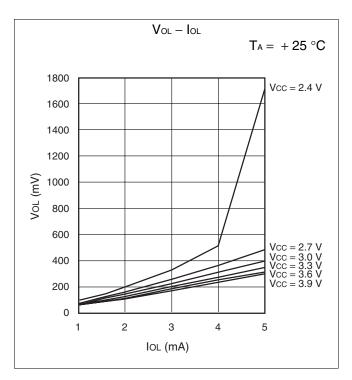

•Flash Memory Program/Erase Characteristics

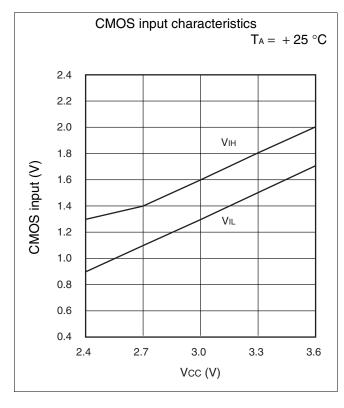

Parameter	Conditions	Value			Unit	Remarks	
Farameter	Conditions	Min	Тур	Max	Oilit	nemarks	
Sector erase time		_	1	15	s	Excludes 00 _H programming prior erasure	
Chip erase time	$T_A = +25 {}^{\circ}C,$ $V_{CC} = 3.0 V$	_	7	_	s	Excludes 00 _H programming prior erasure	
Word (16-bit) programming time		_	16	3600	μs	Excludes system-level overhead	
Program/Erase cycle	_	10000	_		cycle		
Flash Memory Data hold time	Average T _A = + 85 °C	10	_	_	year	*	

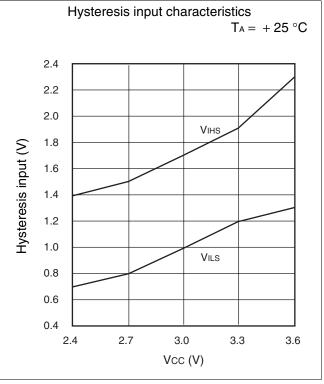
 $^{^*}$: The value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 $^\circ\text{C}$) .

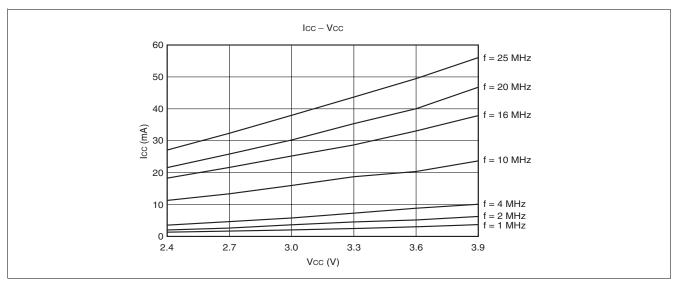
• Use of the X0/X1, X0A/X1A pins

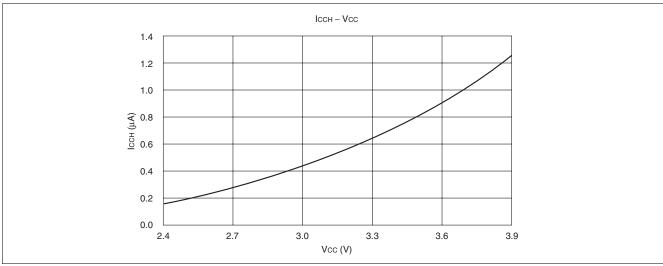


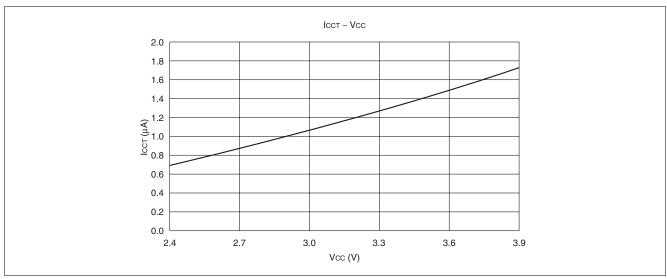


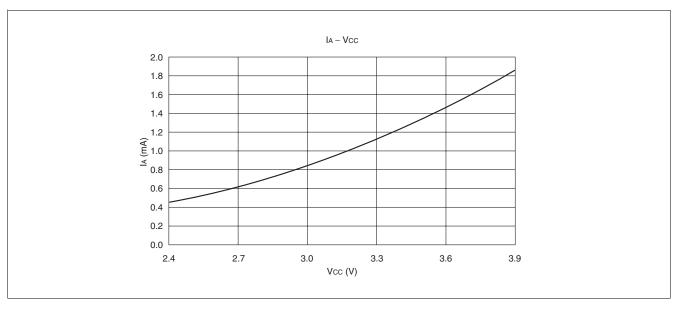


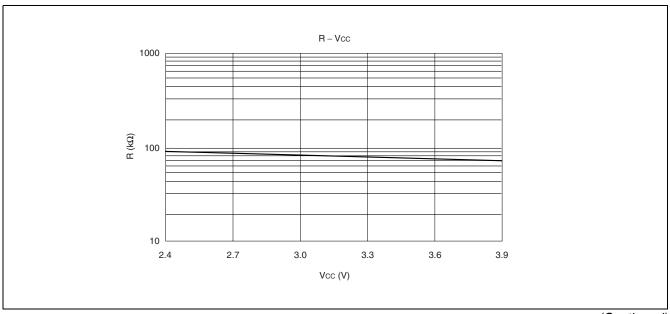

■ EXAMPLE CHARACTERISTICS

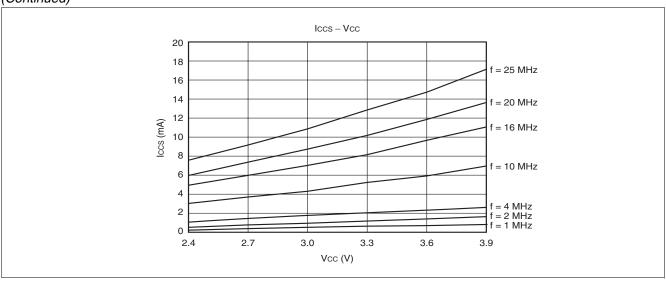

• MB90F482B

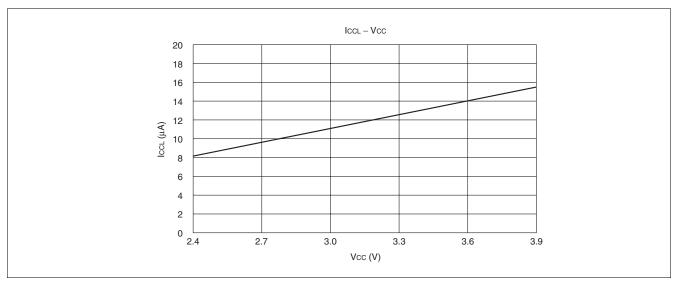


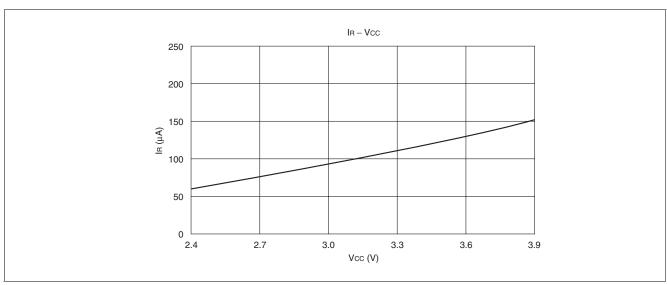


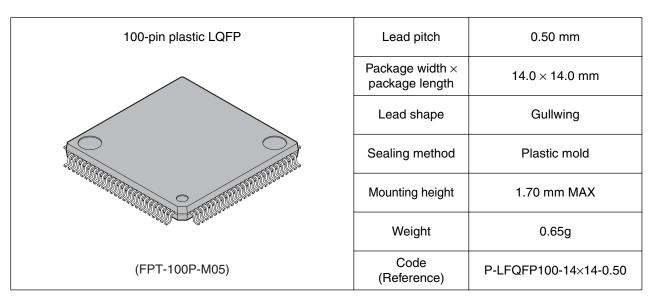


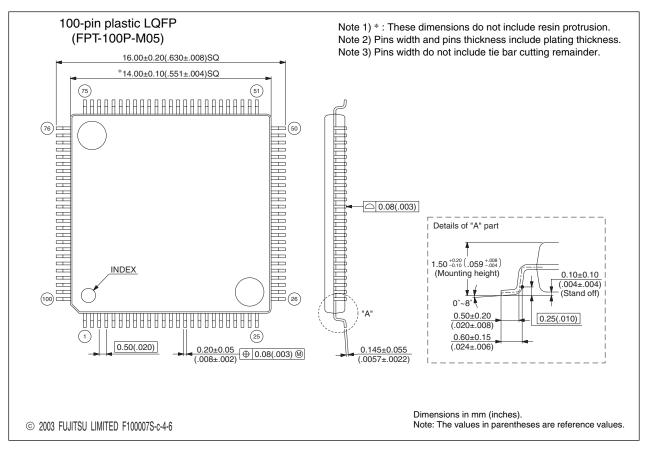








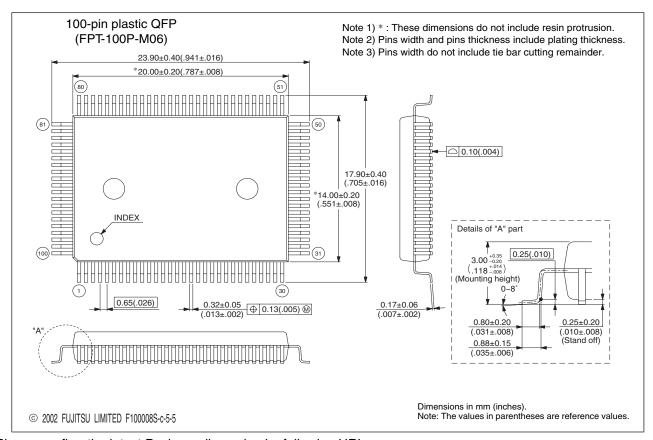




■ ORDERING INFORMATION

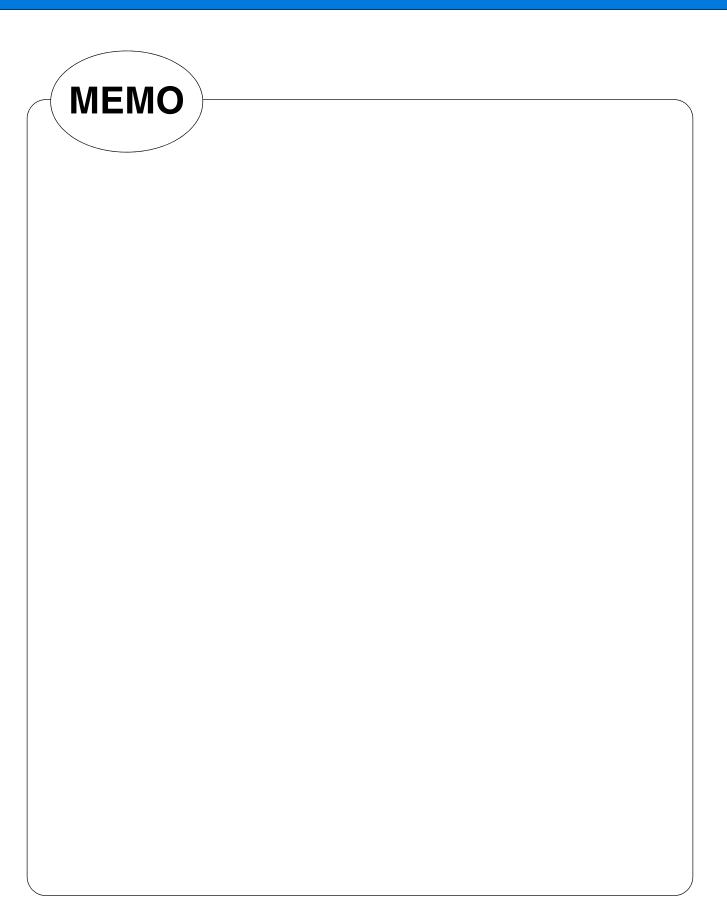
Part number	Package
MB90F481BPF MB90F482BPF MB90487BPF MB90488BPF MB90F488BPF MB90F483CPF MB90F489BPF	100-pin plastic QFP (FPT-100P-M06)
MB90F481BPFV MB90F482BPFV MB90487BPFV MB90488BPFV MB90F488BPFV MB90F489BPFV	100-pin plastic LQFP (FPT-100P-M05)

■ PACKAGE DIMENSIONS



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_	<u> </u>	Changed the series name and part numbers. (MB90480/485 series → MB90480B/485B series, MB90F481, MB90F482 → MB90F481B, MB90F482B)

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.

151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.