

500mA Low-Dropout Linear Regulator

FEATURES

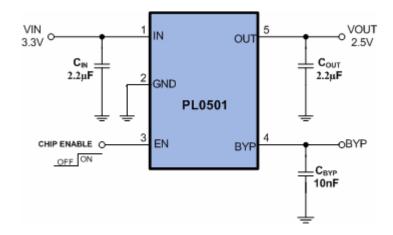
- 500mA high accuracy LDO
- Output voltage accuracy: ±1%
- Ultra low output noise 150μV_{RMS}
- Very low dropout: 175mV @ 500mA
- Zero shutdown supply current
- TTL-logic-controlled enable input
- Thermal and current limit protections
- Ultra low droop load transient response
- Ultra fast line transient response
- Very small (1.2mm \times 1.2mm \times 0.6mm) USP-3L package

APPLICATIONS

- Cellular and cordless phones
- PDAs
- Battery powered portable equipment
- Notebook computers
- PC peripherals
- Wireless LAN cards
- MP3 / MP4 / CD Players
- Digital camera
- USB Hubs, USB 2.0
- Mini PCI & PCI express cards

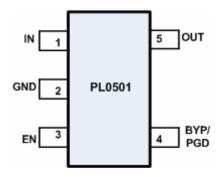
DESCRIPTION

The PL0501 is a CMOS low dropout linear regulator with ultra-low-noise output, very low dropout voltage and very low ground current.


The PL0501 operates from a 2.5V to 5.5V input voltage range and delivers up to 500mA, with low dropout of 175mV at 500mA. Other features of the PL0501 include short-circuit protection and thermal-shutdown protection.

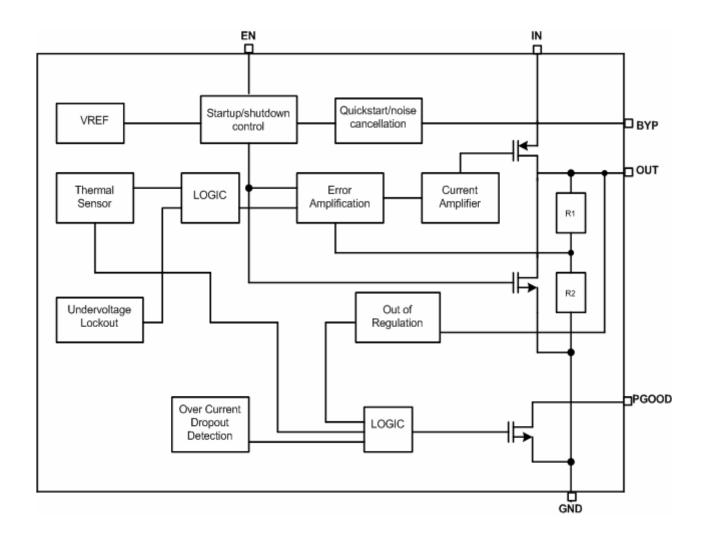
The PL0501 is designed especially for high powered portable devices. Its unique CMOS design offers excellent transient response with very low ground current.

Other key application areas for the PL0501 include handheld computers, PCMCIA cards and WLAN cards.


The PL0501 is available in USP-3L package.

TYPICAL APPLICATION CIRCUIT

PIN CONFIGURATION



PIN DESIGNATOR

Name	Pin	Type	Function		
IN	1	Supply	Supply voltage. 2.5V ~ 5.5V		
GND	2	Ground	Ground pin		
EN	3	Logic input	Enable/Shutdown. TTL and CMOS compatible input. Logic 'H': enable, logic 'L': shutdown		
BYP/ PGD	4	Bypass/PGood	Reference voltage bypass pin. Connect $0.01\mu\text{F} \leq C_{\text{BYP}} \leq 0.1\mu\text{F}$ to GND to reduce output noise. May be left open		
OUT	5	Analog output	Regulator output		

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{IN}	DC Supply Voltage at Pin 1	-0.3 to +6.0	V
V_{EN}	Enable Input Voltage at Pin 3	-0.3 to +6.0	V
P_{D}	Continuous Power Dissipation	Internally limited	W
T_{STG}	Storage Temperature Range	-65 to +150	°C
$R_{\theta JA}$	Thermal Resistance, Junction-To-Air	+235	°C/W
$T_{J,MAX}$	Operating Junction Temperature	-40 to +125	°C
T_L	Lead Temperature (Soldering, 5sec)	+260	°C
ESD	ESD Capability, HBM Model	2.0	KV

ELECTRICAL CHARACTERISTICS

(All specifications are at $T_A = 25$ °C. $V_{IN} = V_{OUT\,(\,NOMINAL\,)} + 1V$ OR 2.5V whichever is greater, $V_{EN} = V_{IN}$, $C_{IN} = C_{OUT} = 1\mu F$, unless otherwise specified.)

Cour - Thi, diffess otherwise specified.)								
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
V_{IN}	Supply Voltage		2.5		5.5	٧		
		$I_{O} = 1 \text{mA}, T_{A} = +25 ^{\circ}\text{C}$	-1.0		+1.0	%		
	Output Voltage Accuracy	$I_O = 1$ mA to 500mA, $T_A = +25$ °C	-1.25		+1.25	%		
V_{DP}	Dropout Voltage (Note 1)	$I_{LOAD} = 500mA$		175		mV		
		$I_{LOAD} = 100 mA$		60		mV		
I_{MAX}	Maximum Output Current	Continuous	500			mA _{RMS}		
I_{LIM}	Short Circuit Current Limit	V_{OUT} < 90% of V_{NOM}		1500		mA		
I_Q	Shutdown Quiescent Current	$V_{EN} < 0.4V$		0.01	0.5	μΑ		
I_{G}	Ground Pin Current	$I_{LOAD} = 1mA$		205	300	nA		
ΔV_{LINE}	Line Regulation dV _{OUT} /dV _{IN}	$V_{\text{IN}} = V_{\text{OUT}} + 1 \text{V (or 2.5V,} \\ \text{whichever is greater) to 5.5V,} \\ I_{\text{O}} = 1 \text{ mA}$			0.1	%/V		
ΔV_{LOAD}	Load Regulation	$I_{LOAD} = 1 \text{mA to } 500 \text{mA}$			1	%		
PSRR	Ripple Rejection, C _{OUT} = 1µF,	f = 100 Hz		75		dB		
rakk	$C_{BYP} = 10nF$, $I_{LOAD} = 10mA$	f = 10 KHz		70				
e _{NO}	Output Voltage Noise	$C_{OUT} = 10 \mu F, C_{BYP} = 10 nF,$		150		μV_{RMS}		

OVER TEMPERATURE PROTECTION

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Thermal Shutdown Temperature			165		°C
	Thermal Shutdown Hysteresis			20		°C

ENABLE INPUT

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V_{IH}	Logic Input High Voltage		1.2			V
V_{IL}	Logic Input Low Voltage				0.4	V
${ m I}_{\sf EN}$	Logic Input Current		-1		1	μΑ
	Shutdown Exit Delay	$V_{EN} = 0$ to 5.5V, $C_{BYP} =$		90		μS
		10nF, $C_{OUT} = 1\mu F$				

Note 1: The Dropout Voltage is defined as V_{IN} - V_{OUT} , when V_{IN} = $V_{OUT\,(\ NOM\)}$

TYPICAL OPERATING CHARACTERSTICS

(All specifications are at $T_A = 25$ °C , unless otherwise specified)

(Not Available)

OPERATION

The PL0501 is an ultra-low-noise, low-dropout, lowquiescent current linear regulator designed for spacerestricted applications. It is available with preset output voltages ranging from 1.5V to 5.0V in 100mV increments. It can supply loads of up to 500mA. As shown in the Block Diagram, the PL0501 consists of a highly accurate band gap core, noise bypass circuit, error amplifier, Pchannel pass transistor and an internal feedback voltage divider. The PL0501 allows for an adjustable output with an external feedback network. The 1.0V band gap reference is connected to the error amplifier's inverting input. The error amplifier compares this reference with the feedback voltage and amplifies the difference. If the feedback voltage is lower than the reference voltage, the pass transistor gate is pulled low. This allows more current to pass to the output and increases the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled high, allowing less current to pass to the output. The output voltage is fed back through an internal resistor voltage-divider connected to the OUT pin. An external bypass capacitor connected to BYP (PL0501-BYP) reduces the noise at the output. Additional blocks include a current limiter, over temperature protection and shutdown logic.

Internal P-Channel Pass Transistor

The PL0501 features a 1Ω (typical) P-channel MOSFET pass transistor. This provides several advantages over similar designs using a PNP pass transistor, including longer battery life. The P-channel MOSFET requires no base drive, which considerably reduces the quiescent current. PNP-based regulators waste considerable current in dropout when the pass transistor saturates. They also use high base-drive current under heavy loads.

The PL0501 does not suffer from these problems and consumes only $90\mu A$ of quiescent current.

Output Voltage Selection

The PL0501 is supplied with factory-set output voltages from 1.5V to 5.0V, in 100mV increments. The PL0501 features a user-adjustable output through an external feedback network (see Typical Application).

To set the output of the PL0501, use the following equation:

 $V_{OUT} = V_{REF} \times [1 + (R1/R2)]$

Where R2 is chosen to be less than $240 \text{K}\Omega$

and $V_{REF} = 1.0V$. Use 1% or better

resistors.

Current Limit

The PL0501 includes a current limiter. It monitors the output current and controls the pass transistor's gate voltage to limit the output current under 1500mA (typical). The output can be shorted to ground for an indefinite amount of time without damaging the part.

The short circuit current limit is increased to approximately 1500mA (typical) when the output voltage is within 10% of the nominal output, thus improving the performance of large pulsating loads. The in-regulation current limit option provides the user to overload the device, maintaining a continuous 500mA (RMS) load.

Enable Input

The PL0501 features an active-high Enable input (EN) pin that allows on/off control of the regulator. The PL0501 bias current reduces to ZERO (leakage current) when it goes into shutdown. The Enable input is TTL/CMOS compatible for simple logic interfacing. When EN is 'H,' the output voltage startup rising time is typically 25us. Connect EN pin to IN pin for normal operation.

Power Good Flag

The PL0501 features a Power Good flag (PGD), which monitors the output voltage and signals an error condition when the output voltage drops 10% below its nominal value.

Under Voltage Lockout

When the input supply goes too low (typically below 2.0V), the PL0501 produces an internal UVLO (Under Voltage Lockout) signal that generates a fault signal and shuts down the chip. This mechanism protects the chip from producing false logic due to low input supply.

Quick Charging Mode

The PL0501 has a quick charge block to get the reference up very quickly by charging the BYP capacitor with very high current when the chip comes out of shut down. This quick charge block stops charging the BYP capacitor when the reference reaches 95% of its nominal value and then the chip switches out of quick charging mode to normal operating mode.

Over Temperature Protection

Over temperature protection limits the total power dissipation in the PL0501. When the junction temperature exceeds $T_J = +165\,^{\circ}\text{C}$, the thermal sensor signals the shutdown logic and turns off the pass transistor. The thermal sensor turns the pass transistor on again after the IC's junction temperature drops by $20\,^{\circ}\text{C}$, resulting in a pulsed output during continuous thermal-overload conditions.

Thermal-overload protection is designed to protect the PL0501 in the event of a fault condition. For continuous operation, do not exceed the absolute maximum junction temperature rating of $T_1 = +150$ °C.

Operating Region and Power Dissipation

The PL0501's maximum power dissipation depends on (1) the thermal resistance of the case and circuit board, (2) the temperature difference between the die junction and ambient and (3) the rate of airflow. The power dissipation across the device is:

$$P = I_{OUT} \times (V_{IN} - V_{OUT})$$

The maximum power dissipation is:

$$P_{MAX} = (T_J - T_A)/(\theta_{JC} + \theta_{CA})$$

Where (T_J-T_A) is the temperature difference between the PL0501 die junction and the surrounding air, θ_{JC} is the thermal resistance of the package and θ_{CA} is the thermal resistance through the PC board, copper traces and other materials to the surrounding air.

The GND pin of the PL0501 performs the dual function of providing an electrical connection to ground and channeling heat away. Connect the GND pin to ground using a large pad or ground plane.

Noise Reduction

For the PL0501, an external $0.01\mu F$ bypass capacitor between BYP and GND with innovative noise bypass scheme reduces the output noises dramatically, exhibiting $100\mu V$ (RMS) of output voltage noise with $C_{BYP}=0.01\mu F$ and $C_{OUT}=10\mu F$.

APPLICATION INFORMATION

Capacitor Selection And Regulator Stability

Use a $1.0\mu F$ capacitor on the PL0501 input and a $1.0\mu F$ capacitor on the output. Large input capacitor values and lower ESR provide better noise rejection and line-transient response.

Reduce output noise and improve load-transient response, stability and power-supply rejection by using large output capacitors. Note that some ceramic dielectrics exhibit large capacitance and ESR variation with temperature. With dielectrics such as Z5U and Y5V, it may be necessary to use a $2.2\mu F$ or larger output capacitor to ensure stability at temperatures below -10°C. With X7R or X5R dielectrics, $1\mu F$ is sufficient at all operating temperatures.

Use a $0.01\mu F$ bypass capacitor at BYP (PL0501-BYP) for low-output voltage noise. The leakage current going into the BYP pin should be less than 10nA.

Noise, PSRR and Transient Response

The PL0501 is designed to deliver ultra-low noise and high PSRR, as well as low dropout and low quiescent currents in battery-powered systems. The PL0501 PSRR is 75dB at 100Hz and 70dB at 10KHz.

When operating from sources other than batteries, improved supply-noise rejection and transient response can be achieved by increasing the values of the input and output bypass capacitors and through passive filtering techniques.

Dropout Voltage

A regulator's minimum dropout voltage determines the lowest usable supply voltage. In battery-powered systems, this determines the useful end-of-life battery voltage. Because the PL0501 uses a P-channel MOSFET pass transistor, its dropout voltage is a function of drain-to-source on resistance (RDS $_{\rm ON}$) multiplied by the load current.

PACKAGE INFORMATION

5-PIN SOT-25 OUTLINE DIMENSION

Dimension:

Symbol		Millimeter			Inch	
Symbol	Min	Typ	Max	Min	Typ	Max
Α			1.45			0.057
A1			0.15			0.006
A2	0.90	1.15	1.30	0.036	0.045	0.051
b	0.30		0.50	0.011		0.020
С	0.08		0.22	0.003		0.009
D E		2.90			0.114	
Е		2.80			0.110	
E1		1.60			0.063	
е		0.95			0.037	
e1		1.90			0.075	
L	0.30	0.45	0.60	0.020	0.018	0.024
L1		0.60			0.024	
L2		0.25			0.010	
R	0.10			0.004		
R1	0.10		0.25	0.004		0.010
θ°	0°	4°	8°	0°	4°	8°
θ1°	5°	10°	15°	5°	10°	15°

DISCLAIMERS

LIFE SUPPORT

Power IC's products are NOT designed to be used as components in devices intended to support or sustain human life. The use of Power IC's products in components intended for surgical implants into the body or other applications, in which failure of Power IC's products could create a situation where personal death or injury may occur, is NOT authorized without the express written approval of Power IC's Chief Executive Officer. Power IC will NOT be held liable for any damages or claims resulting from the use of its products in medical applications.

MILITARY

Power IC's products are NOT designed for use in military applications. The use of Power IC's products in military applications is NOT authorized without the express written approval of Power IC's Chief Executive Officer. Power IC will NOT be held liable for any damages or claims resulting from the use of its products in military applications.

RIGHT TO MAKE CHANGES

Power IC reserves the right to change this document and/or this product without notice. Customers are advised to consult their Power IC sales representative before ordering.