FEATURES

Wide bandwidth: $1 \mathbf{M H z}$ to $\mathbf{4 ~ G H z}$ 80 dB dynamic range ($\pm 3 \mathrm{~dB}$)
Stability over temperature: $< \pm 0.5 \mathrm{~dB}$
Low noise measurement/controller output (VOUT)
Pulse response time: 10 ns
Small footprint package: $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP
Supply operation: 2.7 to 5.5 V at 30 mA
Fabricated using high speed SiGe process

APPLICATIONS

RF transmitter PA setpoint control and level monitoring Power monitoring in radiolink transmitters RSSI measurement in base stations, WLAN, WiMAX, radar

GENERAL DESCRIPTION

The ADL5513 is a demodulating logarithmic amplifier, capable of accurately converting an RF input signal to a corresponding decibel-scaled output. It employs the progressive compression technique over a cascaded amplifier chain, each stage of which is equipped with a detector cell. The device can be used in either measurement or controller modes. The ADL5513 maintains accurate \log conformance for signals greater than 4 GHz . The input dynamic range is typically 80 dB (re: 50Ω) with error less than $\pm 3 \mathrm{~dB}$. The ADL5513 has 10 ns response time which enables RF burst detection to a pulse rate of beyond 50 MHz . The device provides unprecedented logarithmic intercept stability vs. ambient temperature conditions. A supply of 2.7 V to 5.5 V is required to power the device. Current consumption is less than 30 mA , and decreases to TBD $\mu \mathrm{A}$ when the device is disabled.

The ADL5513 can be configured to provide a control voltage to a power amplifier or a measurement output from the VOUT

FUNCTIONAL BLOCK DIAGRAM

pin. Because the output can be used for controller applications, special attention has been paid to minimize wideband noise. In this mode, the setpoint control voltage is applied to the VSET pin.

The feedback loop through an RF amplifier is closed via VOUT, the output of which regulates the amplifier's output to a magnitude corresponding to $\mathrm{V}_{\text {set. }}$. The ADL5513 provides 0 V to ($V_{P O S}-0.1 \mathrm{~V}$) output capability at the VOUT pin, suitable for controller applications. As a measurement device, VOUT is externally connected to VSET to produce an output voltage Vour that increases linear-in-dB with RF input signal amplitude.

The logarithmic slope is $20 \mathrm{mV} / \mathrm{dB}$, determined by the VSET interface. The intercept is -95 dBm (re: 50Ω, CW input, 900 MHz) using the INHI input. These parameters are very stable against supply and temperature variations.

Rev. PrA 6/08

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADL5513

TABLE OF CONTENTS

\qquad
Applications. 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications3
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics. 8
Evaluation Board Configuration Options 10
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{o}}=50 \Omega$, Pins INHI, INLO, ac-coupled, Single-ended drive, VOUT tied to VSET, Error referred to best-fit line (linear regression), unless otherwise noted.
Table 1.

Parameter	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION Maximum Input Frequency		0.001		4	GHz
100 MHz Output Voltage: High Power in Output Voltage: Low Power in $\pm 3.0 \mathrm{~dB}$ Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature Logarithmic Slope Logarithmic Intercept Input Impedance	$\begin{aligned} & P_{\text {IN }}=-10 \mathrm{dBm}, \\ & P_{\text {IN }}=-60 \mathrm{dBm} \end{aligned}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ}$ Deviation from output at $25^{\circ} \mathrm{C}$ $\begin{aligned} & -40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}_{;} \mathrm{P}_{\text {IN }}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} ; \mathrm{P}_{\text {IN }}=-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} ; \mathrm{P}_{\text {IN }}=-50 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}_{;} \mathrm{P}_{1 N}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{P}_{\text {IIN }}=-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}_{;} \mathrm{P}_{\text {IN }}=-50 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 1.578 \\ & 0.589 \\ & 75 \\ & 67 \\ & 58 \\ & 9 \\ & -66 \\ & \\ & \pm 0.421 \\ & \pm 0.467 \\ & \pm 0.496 \\ & \pm 0.63 \\ & \pm 0.696 \\ & \pm 0.0 .556 \\ & 21 \\ & -88.18 \\ & 1500 / \mathrm{TBD} \end{aligned}$		V V dB $\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF
900 MHz Output Voltage: High Power in Output Voltage: Low Power in $\pm 3.0 \mathrm{~dB}$ Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature Logarithmic Slope Logarithmic Intercept Input Impedance	$\begin{aligned} & \mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}, \\ & \mathrm{P}_{\mathrm{IN}}=-60 \mathrm{dBm} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \end{aligned}$ Deviation from output at $25^{\circ} \mathrm{C}$ $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}_{;} \mathrm{P}_{\text {IN }}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}_{;} \mathrm{P}_{\text {IN }}=-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}_{;} \mathrm{P}_{\mathrm{N}}=-50 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}_{;} \mathrm{P}_{\mathrm{N}}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}_{\mathrm{C}} \mathrm{P}_{\mathrm{IN}}-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} ; \mathrm{P}_{\text {IN }}=-50 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 1.59 \\ & 0.59 \\ & 78 \\ & 71 \\ & 68 \\ & 8 \\ & -68 \\ & \\ & \pm 0.45 \\ & \pm 0.40 \\ & \pm 0.515 \\ & \pm 0.525 \\ & \pm 0.62 \\ & \pm 0.67 \\ & 21 \\ & -89.07 \\ & 1500 / \mathrm{TBD} \end{aligned}$		V V dB $\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF

Parameter	Conditions	Min	Typ	Max	Unit
1900 MHz Output Voltage: High Power in Output Voltage: Low Power in $\pm 3.0 \mathrm{~dB}$ Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature Logarithmic Slope Logarithmic Intercept Input Impedance	$\begin{aligned} & \mathrm{P}_{\text {IN }}=-10 \mathrm{dBm} \\ & \mathrm{P}_{\text {IN }}=-60 \mathrm{dBm} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{CW} \text { input, } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \end{aligned}$ Deviation from output at $25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.61 \\ & 0.6 \\ & 78 \\ & 71 \\ & 68 \\ & 7 \\ & -64 \\ & \\ & \pm 0.46 \\ & \pm 0.515 \\ & \pm 0.66 \\ & \pm 0.41 \\ & \pm 0.73 \\ & \pm 0.785 \\ & 21 \\ & -89.87 \\ & 1500 / \mathrm{TBD} \\ & \hline \end{aligned}$		V V dB $\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF
2140 MHz Output Voltage: High Power in Output Voltage: Low Power in $\pm 3.0 \mathrm{~dB}$ Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature Logarithmic Slope Logarithmic Intercept Input Impedance	$\begin{aligned} & P_{\text {IN }}=-10 \mathrm{dBm}, \\ & P_{\text {IN }}=-60 \mathrm{dBm} \end{aligned}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $T_{A}=+25^{\circ} \mathrm{C}$ CW input, $T_{A}=+25^{\circ}$ Deviation from output at $25^{\circ} \mathrm{C}$ $\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}_{;} P_{\text {IN }}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}_{\mathrm{I}} \mathrm{P}_{\mathrm{IN}}=-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{N}}=-50 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} ; \mathrm{P}_{\text {IN }}=-10 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} ; \mathrm{P}_{\mathrm{N}}=-30 \mathrm{dBm} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} ; \mathrm{P}_{\text {IN }}=-50 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 1.61 \\ & 0.61 \\ & 78 \\ & 70 \\ & 66 \\ & 7 \\ & -63 \\ & \\ & \pm 0.43 \\ & \pm 0.497 \\ & \pm 0.598 \\ & \pm 0.635 \\ & \pm 0.727 \\ & \pm 0.676 \\ & 21 \\ & -90.01 \\ & 1500 / \mathrm{TBD} \end{aligned}$		V V dB $\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF
2600 MHz Output Voltage: High Power in Output Voltage: Low Power in $\pm 3.0 \mathrm{~dB}$ Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature	$\begin{aligned} & P_{\text {IN }}=-10 \mathrm{dBm}, \\ & P_{\text {IN }}=-60 \mathrm{dBm} \end{aligned}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ}$ Deviation from output at $25^{\circ} \mathrm{C}$		$\begin{aligned} & 1.62 \\ & 0.61 \\ & 80 \\ & 74 \\ & 72 \\ & 7 \\ & -60 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Logarithmic Slope Logarithmic Intercept Input Impedance			$\begin{aligned} & \pm 0.47 \\ & \pm 0.605 \\ & \pm 0.715 \\ & \pm 0.575 \\ & \pm 0.8 \\ & \pm 0.853 \\ & 21 \\ & -90.56 \\ & 1500 / \text { TBD } \end{aligned}$		dB dB dB dB dB dB $\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF

Parameter	Conditions	Min	Typ	Max	Unit
3.6 GHz Output Voltage: High Power in Output Voltage: Low Power in ± 3.0 dB Dynamic Range $\pm 1.0 \mathrm{~dB}$ Dynamic Range $\pm 0.5 \mathrm{~dB}$ Dynamic Range Maximum Input Level, $\pm 1.0 \mathrm{~dB}$ Minimum Input Level, $\pm 1.0 \mathrm{~dB}$ Deviation vs. Temperature	$\begin{aligned} & P_{\text {IN }}=-10 \mathrm{dBm}, \\ & P_{\text {IN }}=-60 \mathrm{dBm} \end{aligned}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ CW input, $\mathrm{T}_{\mathrm{A}}=+25^{\circ}$ Deviation from output at $25^{\circ} \mathrm{C}$		1.6 0.6 78 71 66 5 -66 $\begin{aligned} & \pm 0.64 \\ & \pm 0.64 \\ & \pm 0.62 \\ & \pm 0.856 \\ & \pm 0.926 \\ & \pm 0.937 \end{aligned}$		V V dB
Logarithmic Slope Logarithmic Intercept Input Impedance			$\begin{aligned} & \hline 21 \\ & -90.57 \\ & \text { TBD } \end{aligned}$		$\mathrm{mV} / \mathrm{dB}$ dBm Ω / pF
SETPOINT INPUT Voltage Range Current Limit Source/Sink	Pin VSET Log conformance error $\leq 1 \mathrm{~dB}$ Min Log conformance error $\leq 1 \mathrm{~dB}$ Max 1\% change		$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$		V mA
OUTPUT INTERFACE Rise Time Fall Time	Input level $=$ no signal to $-10 \mathrm{dBm}, 10 \%$ to $90 \% \mathrm{C}_{\mathrm{LpF}}=10 \mathrm{pF}$ Input level $=$ no signal to $-10 \mathrm{dBm}, 10 \%$ to $90 \% \mathrm{C}_{\text {LpF }}=10 \mathrm{pF}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{nS} \\ & \mathrm{nS} \end{aligned}$
POWER SUPPLY INTERFACE Supply Voltage Quiescent Current Supply Current	Pin VPOS 25 CRF in $=-55 \mathrm{dBm}$ When disabled	2.7	$\begin{aligned} & 5 \\ & 30 \\ & \text { TBD } \end{aligned}$	5.5	V mA $\mu \mathrm{A}$
POWER-DOWN INTERFACE Logic Level Threshold Enable Time Disable Time	Pin PWDN Logic LO enables Logic HI disables PWDN LO to OUT at 100% final value, $C_{\text {LPF }}=10 \mathrm{pF}, \mathrm{RF}$ in $=-10 \mathrm{dBm}$ PWDN HI to OUT at 10% final value, $C_{\text {LPF }}=10 \mathrm{pF}$, $R F$ in $=-10 \mathrm{dBm}$		$\begin{aligned} & \text { VPOS - } 0.7 \mathrm{~V} \\ & 143 \\ & 100 \end{aligned}$		V ns ns

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage: V POS	5.5 V
V SET Voltage	0 V to VPOS
Input Power (Single-Ended, Re: 50Ω)	TBD dBm
Internal Power Dissipation	TBD W
θ_{JA}	TBD
Maximum Junction Temperature $^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature Range	TBD
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 60 sec)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2.
Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1,4	VPOS	Positive supply Voltage (VPOS), 2.7 V to 5.5 V
2	INHI	RF input. AC -coupled RF input.
3	INLO	RF common for INHI. AC- coupled RF common.
10	COMM	Device Common. Temperature Compensation Adjustment. Frequency Dependant Temperature Compensation is set by connecting a ground referenced resistor to this pin.
11	TADJ	VSET
12	Votpoint Input for Operation in Controller Mode. To operate in RSSI mode short VSET to VOUT.	
$5,6,7,8,13$,	NC	Logarithmic/ Error Output. No Connect. These pins may be left open or soldered to a low impedance ground plane. 15,16
	CLPF	Loop Filter Capacitor. In measurement mode, this capacitor sets the pulse response time and video bandwidth.
	In controller mode, the capacitance on this node sets the response time of the error amplifier/integrator. Internally connected to COMM; solder to a low impedance ground plane.	

TYPICAL PERFORMANCE CHARACTERISTICS

$V_{\text {POS }}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},-40^{\circ} \mathrm{C},+85^{\circ} \mathrm{C} ;+125^{\circ} \mathrm{C}$, unless otherwise noted. Black: $+25^{\circ} \mathrm{C}$, Blue: $-40^{\circ} \mathrm{C}$; Red: $+85^{\circ} \mathrm{C}$, Orange: $+125^{\circ} \mathrm{C}$. Error is calculated by using the best-fit line between $P_{\text {IN }}=-40 \mathrm{dBm}$ and $\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}$ at the specified input frequency, unless otherwise noted.

Figure 3 Vout and Log Conformance vs. Input Amplitude at 100 MHz ,
Multiple Devices, $V_{T A D J}=1.0 \mathrm{~V}$

Figure 4 Vout and Log Conformance vs. Input Amplitude at 900 MHz , Multiple Devices, $V_{\text {TADJ }}=0.975 \mathrm{~V}$

Figure 5 Vout and Log Conformance vs. Input Amplitude at 1900 MHz, Multiple Devices, $V_{\text {TADJ }}=0.925 \mathrm{~V}$

Figure 6 Vout and Log Conformance vs. Input Amplitude at 100 MHz , $V_{\text {TADJ }}=1.0 \mathrm{~V}$

Figure 7 Vout and Log Conformance vs. Input Amplitude at 900 MHz,
$V_{\text {TADJ }}=0.975 \mathrm{~V}$

Figure 8. Vout and Log Conformance vs. Input Amplitude at 1900 MHz, $V_{T A D J}=0.925 \mathrm{~V}$

Figure 9. Vout and Log Conformance vs. Input Amplitude at 2140 MHz, Multiple Devices, $V_{T A D J}=0.925 \mathrm{~V}$

Figure 10. Vout and Log Conformance vs. Input Amplitude at 2600 MHz,
Multiple Devices, $V_{\text {TAD }}=0.9 \mathrm{~V}$

Figure 11. Vout and Log Conformance vs. Input Amplitude at 3600 MHz , Multiple Devices, $V_{T A D J}=0.9 \mathrm{~V}$

Figure 12. Vout and Log Conformance vs. Input Amplitude at 2140 MHz, $V_{T A D J}=0.925 \mathrm{~V}$

Figure 13. Vout and Log Conformance vs. Input Amplitude at 2600 MHz, $V_{\text {TADJ }}=0.9 \mathrm{~V}$

Figure 14. Vout and Log Conformance vs. Input Amplitude at 3600 MHz, $V_{\text {TADJ }}=0.9 \mathrm{~V}$

EVALUATION BOARD CONFIGURATION OPTIONS

Table 4. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2, R1	Input Interface. The 52.3Ω resistor in Position R1 combines with the internal input impedance of the ADL5513 to give a broadband input impedance of about 50Ω. C1 and C2 are dcblocking capacitors. A reactive impedance match can be implemented by replacing R1 with an inductor and C1 and C2 with appropriately valued capacitors.	$\begin{aligned} & \mathrm{R} 1=52.3 \Omega(\text { Size 0402 }) \\ & \mathrm{C} 1=47 \mathrm{nF}(\text { Size 0402 } \\ & \mathrm{C} 2=47 \mathrm{nF} \text { (Size 0402) } \end{aligned}$
$\begin{aligned} & \text { C3, C4, C5, C6, } \\ & \text { R11, R12 } \end{aligned}$	Power Supply Decoupling The nominal supply decoupling consists of a 100 pF filter capacitor placed physically close to the ADL5513 and a $0.1 \mu \mathrm{~F}$ capacitor placed nearer to the power supply input pin. If additional isolation from the power supply is required, a small resistance maybe installed in between the power supply and the ADL5513. (R11, R12)	$\begin{aligned} & \mathrm{C} 3=0.1 \mu \mathrm{~F}(\text { Size 0402 }) \\ & \mathrm{C} 4=100 \mathrm{pF}(\text { Size 0402 }) \\ & \mathrm{C} 5=100 \mathrm{pF}(\text { Size 0402 }) \\ & \mathrm{C} 6=0.1 \mu \mathrm{~F}(\text { Size 0402 }) \\ & \text { R11 }=0 \Omega(\text { Size 0402 }) \\ & \text { R12 }=0 \Omega(\text { Size 0402 }) \end{aligned}$
C7	Filter Capacitor The low-pass corner frequency of the circuit that drives the VOUT pin can be lowered by placing a capacitor between CLPF and ground. Increasing this capacitor increases the overall rise/fall time of the ADL5513 for pulsed input signals.	C7 $=1000 \mathrm{pF}$ (Size 0402)
R2, R3 R4, R5, R10, RL, CL	Output Interface—Measurement Mode. In measurement mode, a portion of the output voltage is fed back to the VSET pin via R4. The magnitude of the slope of the VOUT output voltage response can be increased by reducing the portion of Vout that is fed back to VSET. R3 can be used as a backterminating resistor or as part of a single-pole, low-pass filter.	$\begin{aligned} & \text { R2 }=\text { open }(\text { Size 0402 }) \\ & \text { R3 }=1 \mathrm{k} \Omega(\text { Size 0402) } \\ & \text { R4 }=0 \Omega(\text { Size 0402) } \\ & \text { R5 }=\text { open }(\text { Size 0402 }) \\ & \text { R10 }=\text { open }(\text { Size 0402 }) \\ & \text { RL }=C L=\text { open (Size 0402) } \end{aligned}$
R4, R5, R10	Output Interface-Controller Mode. In this mode, R4 must be open. In controller mode, the ADL5513 can control the gain of an external component. A setpoint voltage is applied to Pin VSET, the value of which corresponds to the desired RF input signal level applied to the ADL5513 RF input. A sample of the RF output signal from this variable gain component is selected, typically via a directional coupler, and applied to ADL5513 RF input. The voltage at the VOUT pin is applied to the gain control of the variable gain element. A control voltage is applied to the VSET pin. The magnitude of the control voltage can optionally be attenuated via the voltage divider comprising R4 and R5, or a capacitor can be installed in Position R5 to form a low-pass filter along with R4.	$\begin{aligned} & \text { R4 }=\text { open }(\text { Size 0402 }) \\ & \text { R5 }=\text { open }(\text { Size 0402 }) \\ & \text { R10 }=0 \Omega(\text { Size 0402 }) \end{aligned}$
R6, R7, R8, R9	Temperature Compensation Interface. A voltage source can be used to optimize the temperature performance for various input frequencies. The pads for R8/R9 can be used for a voltage divider from the VPOS node to set the $T_{\text {ADJ }}$ voltage at different frequencies. The ADL5513 may be disabled by by applying a voltage of $\mathrm{V}_{\text {POS }}-0.7 \mathrm{~V}$ to this node.	$\begin{aligned} & \text { R6 }=\text { open }(\text { Size 0402 }) \\ & \text { R7 }=0 \Omega(\text { Size 0402) } \\ & \text { R8 }=\text { open }(\text { Size 0402 }) \\ & \text { R9 }=\text { open } \Omega(\text { Size 0402 }) \end{aligned}$
VPOS, GND	Supply and Ground Connections	Not Applicable

Figure 15. Evaluation Board Schematic

Figure 16.Component Side Layout

Figure 17. Component Side Silkscreen

ADL5513

OUTLINE DIMENSIONS

16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 3×3 mm Body, Very Thin Quad
(CP-16-3)
Dimensions shown in millimeters

Figure 18. -Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Thin, Dual Lead (CP-16-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADL5513-ACPZ-R7				
ADL5513-ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead LFCSP_VQ, Reel	CP-16-3
${\text { ADL5513-ACPZ-WP }{ }^{12}}^{2}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_VQ, Reel	CP-16-3	TBD
ADL5513-EVALZ ${ }^{1}$		16-Lead LFCSP_VQ, Waffle Pack	CP-16-3	TBD

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.
${ }^{2}$ WP = waffle pack

