FXM2IC102

Dual Supply 2-Bit I ${ }^{2}$ C Interface Voltage Translator with Configurable Voltage Supplies and Signal Levels and Auto Direction Sensing

Features

■ Bi-directional interface between any two levels from 1.65 V to 5.5 V

- Buffer isolates capacitance and allows 400pF on each port
- Open-drain inputs/outputs
- Accommodates Standard-mode and Fast-mode $1^{2} \mathrm{C}$-bus devices
■ Fully configurable: Inputs and outputs track V_{CC} level
■ Non-preferential power-up; either V_{CC} may be powered-up first
- Outputs remain in 3-state until active V_{CC} level is reached
- Outputs switch to 3-state if either V_{CC} is at GND

■ Power off high impedance

- Active high output enable referenced to $\mathrm{V}_{\mathrm{CCA}}$ voltage
- 5V tolerant output enable
- Packaged in 8-terminal leadless MicroPak ($1.6 \mathrm{~mm} \times 1.6 \mathrm{~mm}$)
■ Direction control not needed
- ESD protection exceeds:
- 8kV HBM ESD (per JESD22-A114 \& Mil Std 883e 3015.7)
- 15kV HBM I/O to GND ESD
(per JESD22-A114 \& Mil Std 883e 3015.7)

General Description

The FXM2IC102 is a configurable dual-voltage-supply translator designed for bi-directional voltage translation over a wide range of input and output voltages levels.
The FXM2IC102 is intended for use as a voltage translator in applications using the $I^{2} \mathrm{C}$ bus interface. Input and output voltage levels are compatible with $I^{2} \mathrm{C}$ device specification voltage levels.

The device is designed so that the A port tracks the $\mathrm{V}_{\text {CCA }}$ level, and the B port tracks the $\mathrm{V}_{\mathrm{CCB}}$ level. This allows for bi-directional voltage translation over the voltage ranges: $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5.0 \mathrm{~V}$.

The device remains in 3-state until both $\mathrm{V}_{\mathrm{CC}} \mathrm{S}$ reach active levels allowing either $V_{C C}$ to be powered-up first. Internal power down control circuits place the device in 3-state if either V_{CC} is removed.

The two ports of the device have auto-direction sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

Ordering Information

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
FXM2IC102L8X	MAC08A	XG	8-Lead MicroPak, 1.6 mm Wide	3k Units on Tape and Reel

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

(Top Thru View)

Pin Description

Number	Name	Description
1	$\mathrm{~V}_{\mathrm{CCA}}$	A Side Power Supply
2,3	$\mathrm{~A}_{0}, \mathrm{~A}_{1}$	A Side Inputs or 3-State Outputs
4	GND	
5	OE	Output Enable Input
6,7	$\mathrm{~B}_{1}, \mathrm{~B}_{0}$	B Side Inputs or 3-State Outputs
8	$\mathrm{~V}_{\mathrm{CCB}}$	B Side Power Supply

Power-Up/Power-Down Sequencing

FXM translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 V , outputs are in a high-impedance state. The control input (OE) is designed to track the $\mathrm{V}_{\mathrm{CCA}}$ supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin.

Functional Diagram

Function Table

Control	Outputs	
OE		
L	3-State	
H	Normal Operation	

H = HIGH Logic Level
L = LOW Logic Level

The recommended power-up sequence is the following:

1. Apply power to the first V_{Cc}.
2. Apply power to the second V_{CC}.
3. Drive the OE input high to enable the device.

The recommended power-down sequence is the following:

1. Drive OE input low to disable the device.
2. Remove power from either V_{CC}.
3. Remove power from other V_{CC}.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
$\mathrm{V}_{\text {CCA }}, \mathrm{V}_{\text {CCB }}$	Supply Voltage	-0.5 V to +7.0 V
V_{1}	DC Input Voltage A Port B Port Control Input (OE)	$\begin{aligned} & -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \end{aligned}$
V_{O}	Output Voltage ${ }^{(1)}$ A_{n} Outputs 3-State B_{n} Outputs 3-State A_{n} Outputs Active B_{n} Outputs Active	$\begin{array}{r} -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CCA}}+0.5 \mathrm{~V} \\ -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CCB}}+0.5 \mathrm{~V} \end{array}$
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current @ $\mathrm{V}_{1}<0 \mathrm{~V}$	-50mA
I_{OK}	DC Output Diode Current @ $\begin{aligned} & \mathrm{V}_{\mathrm{O}}<0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}} \end{aligned}$	$\begin{aligned} & -50 \mathrm{~mA} \\ & +50 \mathrm{~mA} \end{aligned}$
$\mathrm{IOH} / \mathrm{l}_{\mathrm{OL}}$	DC Output Source/Sink Current	$-50 \mathrm{~mA} /+50 \mathrm{~mA}$
I_{CC}	DC $\mathrm{V}_{\text {CC }}$ or Ground Current per Supply Pin	$\pm 100 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note:

1. I_{O} Absolute Maximum Rating must be observed.

Recommended Operating Conditions ${ }^{(2)}$

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
$\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$	Power Supply Operating	1.65 V to 5.5 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	
	A Port	0.0 V to 5.5 V
	B Port	0.0 V to 5.5 V
	Control Input (OE)	0.0 V to $\mathrm{V}_{\mathrm{CCA}}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Maximum Input Edge Rate $\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 5.5 V	$200 \mathrm{~ns} / \mathrm{V}$
T_{A}	Free Air Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note:

2. All unused inputs and I/O pins must be held at $\mathrm{V}_{\mathrm{CCI}}$ or GND .

FXM2IC102 Application Circuit

Application Notes

The FXM2IC102 has open-drain outputs and requires pull-up resistors on the four data I/O pins as shown in the above figure. If a pair of data I/O pins $\left(\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}\right)$ are not used, they both should be tied to Gnd (or both to V_{C}). In this case, pull-down or pull-up resistors are not required.
The recommended values for the pull-up resistors $\left(R_{P U}\right)$ are $1 \mathrm{k} \Omega$ minimum to $10 \mathrm{k} \Omega$ maximum. The recommended value for the bypass capacitors ($C_{B P}$) is $1.1 \mu \mathrm{~F}$. The recommended value for the pull-down resistor (R_{PD}) on OE is $1 \mathrm{k} \Omega$ or higher and may depend upon the current-sinking capability of the device driving the OE pin.

DC Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	$\mathrm{V}_{\mathrm{CCA}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{CCB}}(\mathrm{V})$		Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {IHA }}$	High Level Input Voltage	1.65-5.5	1.65-5.5	Data Inputs A_{n}		$0.7 \times \mathrm{V}_{\text {CCA }}$		V
		1.65-5.5	1.65-5.5	Control Input OE		$0.9 \times \mathrm{V}_{\text {CCA }}$		
$\mathrm{V}_{\text {IHB }}$		1.65-5.5	1.65-5.5	Data Inputs B_{n}		$0.7 \times \mathrm{V}_{\text {CCB }}$		V
$\mathrm{V}_{\text {ILA }}$	Low Level Input Voltage	1.65-5.5	1.65-5.5	Data Inputs A_{n}			$0.3 \times \mathrm{V}_{\text {CCA }}$	V
		1.65-5.5	1.65-5.5	Control Input OE			$0.1 \times \mathrm{V}_{\text {CCA }}$	
$\mathrm{V}_{\text {ILB }}$		1.65-5.5	1.65-5.5	Data Inputs B_{n}			$0.3 \times \mathrm{V}_{\text {ССВ }}$	V
$\mathrm{V}_{\text {OLA }}{ }^{(3)}$	Low Level Output Voltage	1.65-2.3	1.65-5.5	APort	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$		$0.1 \times \mathrm{V}_{\text {CCA }}$	V
		3.0-5.5	1.65-5.5		$\mathrm{I}_{\text {OL }}=6 \mathrm{~mA}$		0.2	
$\mathrm{V}_{\text {OLB }}{ }^{(3)}$		1.65-5.5	1.65-2.3	B Port	$\mathrm{I}_{\text {OL }}=3 \mathrm{~mA}$		$0.1 \times \mathrm{V}_{\text {ССВ }}$	V
		1.65-5.5	3.0-5.5		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$		0.2	
I	Input Leakage Current	1.65-5.5	1.65-5.5	Control input OE, $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCA}}$ or GND			± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OFF }}$	Power Off Leakage Current	0	5.5	A_{n}	$\begin{aligned} & V_{1} \text { or } V_{O}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$		± 2.0	$\mu \mathrm{A}$
		5.5	0	B_{n}	$\begin{aligned} & V_{1} \text { or } V_{O}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$		± 2.0	
$\mathrm{I}_{\mathrm{Oz}}{ }^{(4)}$	3-State Output Leakage	5.5	5.5	A_{n}, B_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$		± 2.0	$\mu \mathrm{A}$
		5.5	0	A_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\text { Don't Care } \end{aligned}$		± 2.0	
		0	5.5	B_{n}	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{OE}=\text { Don't Care } \end{aligned}$		± 2.0	
$\mathrm{I}_{\text {CCA/B }}{ }^{(5)(6)}$	Quiescent Supply Current	1.65-5.5	1.65-5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCI}}$ or GND, $\mathrm{I}_{\mathrm{O}}=0$			5.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{Ccz}}{ }^{(5)}$	Quiescent Supply Current	1.65-5.5	1.65-5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CCI}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \mathrm{OE} \\ & =\mathrm{V}_{\mathrm{IL}} \end{aligned}$			5.0	$\mu \mathrm{A}$
$I_{\text {CCA }}$	Quiescent Supply Current	0	1.65-5.5	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\text { Don't Care, } \mathrm{B}_{\mathrm{n}} \text { to } \mathrm{A}_{n} \end{aligned}$			-2.0	$\mu \mathrm{A}$
		1.65-5.5	0				2.0	
$I_{\text {ccB }}$	Quiescent Supply Current	1.65-5.5	0	$\begin{aligned} & \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\text { Don't Care, } \mathrm{A}_{\mathrm{n}} \text { to } \mathrm{B}_{\mathrm{n}} \end{aligned}$			-2.0	$\mu \mathrm{A}$
		0	1.65-5.5				2.0	

Notes:

3. This is the output voltage for static conditions. Dynamic drive specifications are given in "Dynamic Output Electrical Characteristics."
4. "Don't Care" indicates any valid logic level.
5. $\mathrm{V}_{\mathrm{CCI}}$ is the V_{CC} associated with the input side.
6. Reflects current per supply, $\mathrm{V}_{\mathrm{CCA}}$ or $\mathrm{V}_{\mathrm{CCB}}$.

Dynamic Output Electrical Characteristics

Output Rise/Fall Time and Dynamic Output Current ${ }^{(7)}$
Output Load: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

Symbol ${ }^{(8)}$	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCO}}=$								Units
		4.5 V to 5.5 V		3.0 V to 3.6 V		2.3V to 2.7V		1.65 V to 1.95 V		
		Typ.	Max.	Typ.	Max.	Typ.	Max.	Typ.	Max.	
$\mathrm{t}_{\text {rise }}{ }^{(9)}$	Output Rise Time, A Port, B Port		4.0		5.0		6.0		8.0	ns
$t_{\text {fall }}{ }^{(10)}$	Output Fall Time, A Port, B Port		4.0		5.0		6.0		8.0	ns
$\mathrm{IOHD}^{(9)}$	Dynamic Output Current HIGH	-45		-24		-15		-8.0		mA
$\mathrm{I}_{\text {OLD }}{ }^{(10)}$	Dynamic Output Current LOW	+45		+24		+15		+8.0		mA

Maximum Data Rate ${ }^{(11)}$

Output Load: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

$\mathrm{V}_{\mathrm{CCA}}=$	$\mathrm{T}_{\mathbf{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$				
	4.5 V to 5.5 V	3.0 V to 3.6 V	$\mathbf{2 . 3 V}$ to 2.7 V	1.65 V to 1.95 V	
	Min.	Min.	Min.	Min.	Units
4.5V to 5.5 V	40	35	30	20	MHz
3.0V to 3.6 V	35	35	30	20	MHz
2.3V to 2.7 V	30	30	25	20	MHz
1.65 V to 1.95 V	20	20	20	20	MHz

Notes:

7. Dynamic output characteristics are guaranteed but not tested.
8. $\mathrm{V}_{\mathrm{CCO}}$ is the V_{CC} associated with the output side.
9. See Figure 5.
10. See Figure 6.
11. Maximum data rate is guaranteed but not tested.

AC Characteristics (Output Load: $C_{L}=50 p F, R_{L}=1 \mathrm{k} \Omega$)
$\mathrm{V}_{\mathrm{CCA}}=4.5 \mathrm{~V}$ to 5.5 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$								Units
		4.5V to 5.5 V		3.0 V to 3.6 V		2.3V to 2.7V		1.65 V to 1.95 V		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$	A to B	1.0	4.5	1.5	5.5	2.0	7.0	3.0	11.5	ns
	B to A	1.0	4.5	1.5	5.5	1.5	6.5	2.5	9.5	
$\mathrm{t}_{\text {PHL }}$	A to B	2.0	6.0	2.5	6.5	3.0	8.0	4.0	12.5	ns
	B to A	2.0	6.0	2.5	7.0	3.0	8.0	3.5	12.0	
$t_{\text {PZL }}$	OE to A		9.5		10.0		11.5		18.0	ns
	OE to B		9.0		11.0		13.5		22.0	
$t_{\text {PLZ }}$	OE to A		26.5		26.5		26.5		26.5	ns
	OE to B		26.0		26.5		20.5		15.5	
$\mathrm{t}_{\text {skew }}{ }^{(12)}$	A Port, B Port		0.5		0.5		0.5		0.5	ns

$\mathrm{V}_{\mathrm{CCA}}=3.0 \mathrm{~V}$ to 3.6 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$								Units
		4.5 V to 5.5 V		3.0 V to 3.6 V		2.3V to 2.7 V		1.65 V to 1.95 V		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }}$	A to B	1.5	5.5	1.5	6.5	2.0	8.0	3.0	12.0	ns
	B to A	1.5	5.5	1.5	6.5	2.0	7.5	2.5	10.5	
$t_{\text {PHL }}$	A to B	2.5	7.0	2.5	7.5	3.0	9.0	4.0	13.0	ns
	B to A	2.5	6.5	2.5	7.5	3.0	9.5	4.0	13.0	
$t_{\text {PZL }}$	OE to A		12.5		13.0		15.5		21.0	ns
	OE to B		10.0		12.5		14.5		22.5	
$\mathrm{t}_{\text {PLZ }}$	OE to A		27.5		28.0		28.0		28.0	ns
	OE to B		27.5		28.0		28.5		22.5	
$\mathrm{t}_{\text {skew }}{ }^{(12)}$	A Port, B Port		0.5		0.5		0.5		0.5	ns

$\mathrm{V}_{\mathrm{CCA}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$								Units
		4.5V to 5.5V		3.0 V to 3.6 V		2.3V to 2.7 V		1.65 V to 1.95 V		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$	A to B	1.5	6.5	2.0	7.5	2.5	8.5	3.5	12.5	ns
	B to A	2.0	7.5	2.0	8.0	2.5	8.5	3.0	11.5	
$\mathrm{t}_{\text {PHL }}$	A to B	3.0	8.5	3.0	9.5	3.0	10.0	4.0	13.5	ns
	B to A	3.0	8.0	3.0	9.0	3.0	10.0	4.5	14.0	
$\mathrm{t}_{\text {PZL }}$	OE to A		16.0		16.5		18.0		23.5	ns
	OE to B		11.0		14.0		15.5		23.5	
$t_{\text {PLZ }}$	OE to A		29.0		29.0		29.5		29.5	ns
	OE to B		29.0		29.0		29.5		29.5	
$\mathrm{t}_{\text {skew }}{ }^{(12)}$	A Port, B Port		0.5		0.5		0.5		0.5	ns

AC Characteristics (Continued) (Output Load: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$)
$\mathrm{V}_{\mathrm{CCA}}=1.65 \mathrm{~V}$ to 1.95 V

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CCB}}=$								Units
		4.5V to 5.5V		3.0 V to 3.6 V		2.3V to 2.7 V		1.65 V to 1.95 V		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PLH }}$	A to B	2.5	9.5	2.5	10.5	3.0	11.5	4.0	15.0	ns
	B to A	3.0	11.5	3.0	12.0	3.5	12.5	4.0	15.0	
$\mathrm{t}_{\text {PHL }}$	A to B	3.5	11.5	4.0	12.5	4.5	14.0	5.0	15.5	ns
	B to A	4.0	12.5	4.0	13.0	4.0	13.5	5.0	15.5	
$t_{\text {PZL }}$	OE to A		27.0		27.0		27.0		30.0	ns
	OE to B		18.0		19.5		22.5		29.0	
$t_{\text {PLZ }}$	OE to A		34.0		34.0		34.5		35.0	ns
	OE to B		31.5		32.5		33.5		36.5	
$\mathrm{t}_{\text {skew }}{ }^{(12)}$	A Port, B Port		0.5		0.5		0.5		0.5	ns

Note:

12. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW). See Figure 8. Skew is guaranteed but not tested

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
Cin	Input Capacitance Control pin (OE)	$\mathrm{V}_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=\mathrm{GND}$	4	pF
Ci / o	Input/Output Capacitance, A_{n}, B_{n}	$\mathrm{V}_{\text {CCA }}=\mathrm{V}_{\text {CCB }}=5.0 \mathrm{~V}$, OE $=\mathrm{V}_{\text {CCA }}$	6	pF
Cpd	Power Dissipation Capacitance	$\begin{aligned} & V_{\mathrm{CCA}}=\mathrm{V}_{\mathrm{CCB}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	40	pF

Test	Input Signal	Output Enable Control	S1 Position
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Data Pulses	$\mathrm{V}_{\mathrm{CCA}}$	Open
$\mathrm{t}_{\text {PZL }}\left(\mathrm{OE}\right.$ to $\left.\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$	0 V	LOW to HIGH Switch	$2 \times \mathrm{V}_{\mathrm{CCO}}$
$\mathrm{t}_{\text {PLZ }}\left(\mathrm{OE}\right.$ to $\left.\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$	0 V	HIGH to LOW Switch	$2 \times \mathrm{V}_{\mathrm{CCO}}$

AC Load Table

$\mathbf{V}_{\mathbf{C C O}}$	$\mathbf{C l}$	$\mathbf{R I}$
$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	50 pF	$1 \mathrm{k} \Omega$
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	50 pF	$1 \mathrm{k} \Omega$
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	50 pF	$1 \mathrm{k} \Omega$
$5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	50 pF	$1 \mathrm{k} \Omega$

Figure 1. AC Test Circuit and AC Load Table

Input $t_{R}=t_{F}=2.0 \mathrm{~ns}, 10 \%$ to 90% @ $\mathrm{V}_{\mathrm{I}}=1.65 \mathrm{~V}$ to 1.95 V
Input $t_{R}=t_{F}=2.0 n s, 10 \%$ to 90% @ $V_{I}=2.3$ to 2.7 V
Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $V_{I}=3.0 \mathrm{~V}$ to 3.6 V only Input $t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $V_{I}=4.5 \mathrm{~V}$ to 5.5 only

Figure 2. Waveform for Inverting and Non-inverting Functions

OUTPUT
CONTROL

DATA
OUT

Input $t_{R}=t_{F}=2.0 n s, 10 \%$ to $90 \% @ V_{1}=1.65 \mathrm{~V}$ to 1.95 V
Input $t_{R}=t_{F}=2.0$ ns, 10% to $90 \% @ V_{I}=2.3$ to 2.7 V
Input $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only
Input $t_{R}=t_{F}=2.5 n s, 10 \%$ to $90 \%, @ V_{1}=4.5 \mathrm{~V}$ to 5.5 only
Figure 4. 3-STATE Output High Enable Time

Input $t_{R}=t_{F}=2.0 n s, 10 \%$ to $90 \% @ V_{1}=1.65 \mathrm{~V}$ to 1.95 V Input $t_{R}=t_{F}=2.0$ ns, 10% to $90 \% @ V_{1}=2.3$ to 2.7 V Input $t_{R}=t_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to 90%, @ $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$ to 3.6 V only Input $t_{R}=t_{F}=2.5$ ns, 10% to 90%, @ $V_{I}=4.5 \mathrm{~V}$ to 5.5 only

Figure 3. 3-STATE Output Low Enable Time

Symbol	Vcc
$\mathrm{Vmi}^{(13)}$	$\mathrm{V}_{\mathrm{CCI}} / 2$
Vmo	$\mathrm{V}_{\mathrm{CcO}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$0.5 \times \mathrm{V}_{\mathrm{Cco}}$
V_{Y}	$0.1 \times \mathrm{V}_{\mathrm{CCO}}$

Note:

13. $\mathrm{V}_{\mathrm{CCI}}=\mathrm{V}_{\mathrm{CCA}}$ for control pin OE or $\mathrm{Vmi}=\left(\mathrm{V}_{\mathrm{CCA}} / 2\right)$.

Figure 5. Active Output Rise Time and Dynamic Output Current High

Figure 7. Maximum Data Rate (or F-toggle) in MHz

loLD $\approx\left(C_{L}+C_{/ / O}\right) \times \frac{\Delta V_{\text {OUT }}}{\Delta t}=\left(C_{L}+C_{/ / O}\right) \times \frac{(80 \%-20 \%) \times V_{C C O}}{t_{\text {FALL }}}$

Figure 6. Active Output Fall Time and Dynamic Output Current Low

$t_{\text {skew }}=\left(\mathrm{t}_{\text {pHLmax }}-\mathrm{t}_{\mathrm{p} H L \min }\right)$ or $\left(\mathrm{t}_{\mathrm{pLH}} \max -\mathrm{t}_{\mathrm{pLH}}\right.$ min $)$
Figure 8. Output Skew Time

Tape and Reel Specification
Tape Format for MicroPak

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
L8X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed

Tape Dimensions inches (millimeters)

Reel Dimensions inches (millimeters)

Tape Size	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{N}	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	W1 +0.078/-0.039
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	$(8.40+1.50 /-0.00)$	(14.40)	$(\mathrm{W} 1+2.00 /-1.00)$

Physical Dimensions

Figure 9. 8-Lead MicroPak, 1.6 mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

FAIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	FPS ${ }^{\text {™ }}$	PDP SPM ${ }^{\text {™ }}$	The Power Franchise ${ }^{\circledR}$
Build it Now ${ }^{\text {TM }}$	F-PFS ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {™ }}$	the
CorePLUS ${ }^{\text {T }}$	FRFET ${ }^{\text {® }}$	PowerTrench ${ }^{\circledR}$	franchise
CorePOWER ${ }^{\text {¹ }}$	Global Power Resource ${ }^{\text {SM }}$	Programmable Active Droop ${ }^{\text {™ }}$	TinyBoost ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {¹ }}$	QFET ${ }^{\text {® }}$	TinyBuck ${ }^{\text {™ }}$
CTL ${ }^{\text {™ }}$	Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{(8)}$
Current Transfer Logic ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTOM
EcoSPARK ${ }^{\text {® }}$	IntelliMAX ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {tM }}$
EfficentMax ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	Saving our world, 1 mW at a time ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
EZSWITCH ${ }^{\text {тм }}$ *	MegaBuck ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
E7 ${ }^{\text {T }}$	MICROCOUPLER ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
Γ^{\circledR}	MicroFET ${ }^{\text {TM }}$	$\text { SPM }^{\circledast}$	W
$\%^{8}$	MicroPak ${ }^{\text {™ }}$	STEALTH ${ }^{\text {TM }}$	SerDes
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
Fairchild Semiconductor ${ }^{\circledR}$	MotionMax ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	Ultra FRFET ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {тм }}$-6	UniFET ${ }^{\text {Tm }}$
FACT^{\oplus}	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {тм }}$-8	$\text { VCX }{ }^{\text {™ }}$
$\mathrm{FAST}^{\text {® }}$	OPTOPLANAR ${ }_{\circledR}^{\circledR}$	SupreMOS ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {TM }}$	
FlashWriter ${ }^{\text {® }}$		كGYSTEM ${ }^{\circledR}$	

* EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I34

