DESCRIPTION

R8A66152 is a semiconductor integrated circuit which has 12-bit shift register function to execute serial in parallel out conversion and parallel in - serial out conversion.
Built in two shift registers for serial in - parallel out and parallel in - serial out are constructed independently, This IC is able to read serial input data into a shift register while output the serial data converting from the parallel data input.
Also, parallel data I/O pins can be set to input mode or output mode by a bit.
R8A66152 is useful in a wide range of applications, such as MCU (micro controller unit) I/O port extension and serial bus system data communication.
Moreover, R8A66152 can be used as the anode common LED drive, too.

FEATURES

- Bi-directional serial communication with MCU
- Serial data can be input during parallel to serial data conversion
- Parallel data I/O pins can be set input mode or output mode by a bit
- Schmitt input (DI, CLK, IS, /CS)
- N-ch open drain output (DO, D1~D12).

High output current IOL=24mA (at Vcc=4.5V), IOL=15mA (at Vcc=3.0V)

- Parallel data I/O pins (D1~D12)
- Wide supply voltage range (Vcc=2.0 to 6.0 V)
- Wide operating temperature range ($\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$)

APPLICATION

- Serial - parallel or parallel - serial data conversion for MCU peripheral.
- Serial bus control by MCU.
- LED array drive, The various LED display modules.

PIN CONFIGURATION (TOP VIEW)

BLOCK DIAGRAM

FUNCTION

The R8A66152 is produced by using the silicon gate CMOS technology and has low power dissipation and high noise margin.
Built in two shift registers for serial in-parallel out (Shift register 2) and parallel in-serial out (Shift register 1) are constructed independently, R8A66152 is able to read serial input data into a shift register while output the serial data converting from the parallel data input.
Serial output operation of 12-bit parallel latched data and serial input operation from MCU are started when /CS is changed from " H " to "L".
12-bits parallel data are latched by the negative edge of /CS and are output from the DO terminal synchronously to the negative edge of CLK, and also the DI terminal read serial input data from MCU and are written into the internal shift register 2.
The 13th and following shift clock pulse are ignored and serial input data is masked, and DO terminal becomes high-impedance ("High-Z").
When /CS is changed from "L" to "H", 12-bits serial data which is read from the DI terminal are output to the D1~D12 terminals as parallel data.
As the output circuit type of D1~D12 terminals is N -ch open drain output, write data " H " for pins which should be set to input mode.

DESCRIPTION OF OPERATION

(1) When power ON, the status of DO and D1~D12 terminals are not determined. These terminals are turn to high-impedance when "L" is input to the /S terminal.
(2) By the negative edge of /CS, the status of D1~D12 terminals is loaded on shift register 1.
(3) Synchronous to the negative edge of CLK, 12-bit loaded data is serial output from the DO terminal.
(4) Synchronous to the positive edge of CLK, 12-bit serial input data from DI is write into the shift register 2.
(5) The 13th and following shift clock pulse are ignored and the serial data input operation is stopped. And the DO terminal becomes high-impedance ("High-Z").
(6) By the positive edge of /CS, input data described in (4) is output to D1~D12 terminals.
(7) Shift register 1 loads the AND tie data of external parallel input data and latched data on parallel output latch.
(8) If the /CS is changed from "L" to "H" before reaches the 12th bit of CLK, parallel output latch latches data which has been written on shift register 2 and output it to D1~D12 terminals.
Serial data after this since is ignored and the DO terminal becomes high-impedance.
(9) Input/output mode set to D1~D12 terminals is done by the serial input data to the DI terminal.

Terminals which " H " is written are set to input, and "L" is written are set to output.

OPERATION TIMING CHART

ABSOLUTE MAXIMUM RATINGS (Ta=-40 $-85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
VCC	Supply voltage		$-0.5 \sim+7.0$	V
VI	Input voltage		$-0.5 \sim$ Vcc +0.5	V
VO	Output voltage		$-0.5 \sim$ Vcc +0.5	V
IO	Output current per output pin		50	mA
ICC	Supply / GND current	VCC, GND	385	mA
Pd	Power dissipation	(Note)	500	mW
Tstg	Storage temperature range		$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: R8A66152SP: $\mathrm{Ta}=-40 \sim+70^{\circ} \mathrm{C}$. $\mathrm{Ta}=70 \sim 85^{\circ} \mathrm{C}$ are derated at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Limits		
		Min.	Typ.	Max.	
Vcc	Supply voltage	2.0		6.0	V
VI	Input voltage	0		Vcc	V
VO	Output voltage	0		Vcc	V
Topr	Operating temperature range	-40		85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Vcc=2.0~6.0V, Ta=-40~85 ${ }^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
VT+	Positive going threshold voltage (*1)	$\begin{aligned} & \text { Vo=0.1V, Vcc-0.1V } \\ & \text { I lo I=20uA } \end{aligned}$		$0.35 \times$ Vcc		$0.80 \times \mathrm{Vcc}$	V
VT-	Negative going threshold voltage (*1)			$0.20 \times$ Vcc		$0.65 \times \mathrm{Vcc}$	V
VIH	"H" input voltage (*2)			$0.75 \times \mathrm{Vcc}$			V
VIL	"L" input voltage (*2)					$0.25 \times \mathrm{Vcc}$	V
VOL	"L" output voltage	$\begin{aligned} & \hline \mathrm{VI}=\mathrm{VT}+, \mathrm{VT}- \\ & \mathrm{Vcc}=4.5 \mathrm{~V} \\ & \hline \end{aligned}$	$1 \mathrm{OL}=24 \mathrm{~mA}$			0.5	V
		$\begin{aligned} & \mathrm{VI}=\mathrm{VT}+\mathrm{VT}- \\ & \mathrm{Vcc}=3.0 \mathrm{~V} \end{aligned}$	$1 \mathrm{OL}=15 \mathrm{~mA}$			0.5	V
10	Output leakage current	$\mathrm{Vcc}=6 \mathrm{~V}$	Vo=Vcc			10	uA
			Vo=GND			-10	
IIH	"H" input current	$\mathrm{VI}=\mathrm{Vcc}, \quad \mathrm{Vcc}=6 \mathrm{~V}$				1	uA
IIL	"L" input current	$\mathrm{VI}=\mathrm{GND}, \mathrm{Vcc}=6 \mathrm{~V}$				-1	
Icc	Quiescent supply current	$\begin{aligned} & \text { VI=Vcc, GND } \\ & \mathrm{Vcc}=6 \mathrm{~V} \end{aligned}$				100	uA

*1 : DI, CLK, /CS, /S
*2 : D1~D12

SWITCHING CHARACTERISTICS (Vcc=2.0~6.0V, Ta=-40 $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
fmax	Maximum repeat frequency	$\begin{gathered} C L=50 p F \\ R L=1 \mathrm{k} \Omega \\ \text { (note1) } \end{gathered}$			1.9	MHz
tPLZ	Output "L-Z" and "Z-L" propagation time CLK - DO				400	ns
tPZL					400	ns
tPLZ	Output "L-Z" and "Z-L" propagation time /CS - D1~D12				400	ns
tPZL					400	ns
tPLZ	Output "L-Z" propagation time /S - DO, IS - D1~D12				400	ns

TIMING REQUIREMENTS (Vcc=2.0~6.0V, Ta=-40~85 C , unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
tw	CLK, /CS, /S pulse width		260			ns
tsu	Setup time of DI to CLK		130			ns
	Setup time of /CS to CLK		130			ns
	Setup time of D1~D12 to /CS		130			ns
th	Hold time of DI to CLK		130			ns
	Hold time of /CS to CLK		130			ns
	Hold time of D1~D12 to /CS		130			ns
trec	Recovery time of /CS to /S		130			ns

NOTE1: TEST CIRCUIT

(1) The pulse generator (P.G.) has the following characteristics
(10\%~90\%) tr=6ns, tf=6ns, Zo=50 Ω
(2) The capacitance CL includes stray wiring capacitance and the probe input capacitance.

TIMING DIAGRAM

PACKAGE OUTLINE

Package	RENESAS Code	Previous Code
20pin SOP	PRSP0020DG-A	20P2X-C

$\begin{aligned} & \text { Roghronco } \\ & \text { Symbol } \end{aligned}$	Driensikn n Milmeters		
	Mh	Nom	Max
0	12.60	12.80	12.90
E	7.39	7.49	7.59
A2	-	2.31	-
A1	0.10	0.20	0.30
A	-	-	2.65
bp	0.31	0.41	0.51
c	0.16	0.25	0.33
9	$0 \cdot$	-	8.
HE	10.01	10.31	10.64
回	-	1.27	-
\times	-	-	0.25
y	-	-	0.10
zD	-	0.71	
Lp	0.38	-	-
L1	-	1.41	-

All trademarks and registered trademarks are the property of their respective owners.

Renesas Technology Corp. sales strategic Planning Div. Nippon Bidg. 2-6-2, onte-machi, Chiyodaku, Tolyo 100-0004, Japan

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
enesas shald have no liability or damages or infingement of any intellectual property or other rights arising out of the use of any information in this document, including but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations
All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
2. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
Win the exception of products specined by Renenas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare combustion control aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
2) surgical implantations
3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas shall have no liability for damages ansing out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design fir hardware and sof malfunction prevention, appropriate treatment for aging degradation or any other applicable measures ane
esas products are attached or affixed, the risk of accident such as swallowing by inants and smail children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products This document may not be reproduced or duplicated in any form, in whont
13. Please contact a Renesas sales office if you have any questions regarding the in part, without prior written approval from Renesas any other inquines

Renesas

RENESAS SALES OFFICES
http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA'95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65>6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th FI., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

