$0.45-\Omega$ CMOS, $1.65-\mathrm{V}$ to $3.6-\mathrm{V}$, Dual DPDT Analog Switch

FEATURES

- Low Voltage Operation (1.65 V to 3.6 V)
- Low On-Resistance - ron: 0.45Ω @ 2.7 V
- Fast Switching: $t_{0 N}=28 \mathrm{~ns}$ $\mathrm{t}_{\text {OFF }}=17 \mathrm{~ns}$
- QFN-16 (3x3) Package

BENEFITS

- Reduced Power Consumption
- High Accuracy
- Reduce Board Space
- TTL/1.8-V Logic Compatible
- High Bandwidth

APPLICATIONS

- Cellular Phones
- Speaker Headset Switching
- Audio and Video Signal Routing
- PCMCIA Cards
- Battery Operated Systems

DESCRIPTION

The DG2718 is a dual double-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed, low on-resistance and small physical size, the DG2718 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG2718 is built on Vishay Siliconix's low voltage process. An epitaxial layer prevents latchup. Break-before-make is guaranteed.

The switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Reference to GND
QFN-16 ${ }^{\text {C }}$
1385 mW

Current (Any terminal except NO, NC or COM) 30 mA
Continuous Current (NO, NC, or COM) . $\pm 300 \mathrm{~mA}$
Peak Current . $\pm 500 \mathrm{~mA}$
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)
Storage Temperature (D Suffix) . 65 to $150^{\circ} \mathrm{C}$
Package Solder Reflow Conditions ${ }^{\text {d }}$
16-Pin QFN ($3 \times 3 \mathrm{~mm}$)
$250^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $17.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$
d. Manual soldering with iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS (V+ = $\mathbf{1 . 8} \mathbf{V}$)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 1.1 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO},}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance ${ }^{\text {d }}$	ron	$\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 0.9 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room Full		0.7	$\begin{aligned} & \hline 2.0 \\ & 2.8 \end{aligned}$	Ω
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.1			
Input Low Voltage	$V_{\text {INL }}$		Full			0.4	V
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		6		pF
Input Current	$\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		62	$\begin{aligned} & 94 \\ & 92 \end{aligned}$	ns
Turn-Off Time	toff		Room Full		24	$\begin{aligned} & 52 \\ & 55 \end{aligned}$	
Break-Before-Make Time	t_{d}		Full	16			
Charge Injection ${ }^{\text {d }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		65		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room		-74		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-74		
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		108		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		108		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		225		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$		Room		225		
Power Supply							
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full			1.0	$\mu \mathrm{A}$

SPECIFICATIONS (V+=3 V)

Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.5 \text { or } 1.4 \mathrm{Ve}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	

Analog Switch

Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$, $\mathrm{V}_{\mathrm{COM}}$		Full	0		V+	V
On-Resistance ${ }^{\text {d }}$	ron	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0.2 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA}$	Room Full		0.45	$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	Ω
ron Flatness ${ }^{\text {d }}$	ron Flatness	$\begin{gathered} \mathrm{V}_{+}=2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=100 \mathrm{~mA} \end{gathered}$	Room		0.1	0.15	
ron Match ${ }^{\text {d }}$	$\Delta \mathrm{r} \mathrm{O}$		Room		0.05		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (off), }}$ $\mathrm{I}_{\mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
	ICOM(off)		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current	ICOM(on)	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	

Digital Control

Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	1.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.5	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		6		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$

Dynamic Characteristics

Turn-On Time	ton	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		28	$\begin{aligned} & 57 \\ & 60 \end{aligned}$	ns
Turn-Off Time	toff		Room Full		17	$\begin{aligned} & \hline 45 \\ & 47 \end{aligned}$	
Break-Before-Make Time	t_{d}		Full	1			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		232		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	Room		-75		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-75		
	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		102		pF
$\mathrm{N}_{\mathrm{O}}, \mathrm{N}_{\mathrm{C}}$ Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		102		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		234		
	$\mathrm{C}_{\mathrm{NC} \text { (on) }}$		Room		234		

Power Supply

Power Supply Range	V+			2.7	3.3	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full		1.0	$\mu \mathrm{A}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
. Guaranteed by 5-V leakage testing, not production tested.

TYPICAL CHARACTERISTICS ($\mathbf{2 5}^{\circ} \mathrm{C}$ UNLESS NOTED)

$r_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

Leakage Current vs. Temperature

ron Vs. Analog Voltage and Temperature

Leakage vs. Analog Voltage

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$ UNLESS NOTED)

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

TEST CIRCUITS

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

