Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency \& optical devices and power devices.

DESCRIPTION

The 4250 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 720 series using a simple instruction set. The computer is equipped with one 8 -bit timer which has a reload register and the interrupt function. The various microcomputers in the 4250 Group include variations of the built-in memory type as shown in the table below.

FEATURES

- Minimum instruction execution time \qquad $1.0 \mu \mathrm{~s}$ (at 4.0 MHz system clock frequency, $\mathrm{V} D \mathrm{D}=4.5 \mathrm{~V}$ to 5.5 V)
- Supply voltage
4.5 V to 5.5 V (at 4.0 MHz system clock frequency) 2.5 V to 5.5 V (at 1.0 MHz system clock frequency) 2.2 V to 5.5 V (at 1.0 MHz system clock frequency: only for Mask ROM version)
- Timer

Timer 1 8-bit timer with a reload register

- Interrupt 2 sources
- CR oscillation circuit (Capacitor and Resistor connected externally)
- Logic operation instruction
- RAM back-up function
- Key-on wakeup function (ports G and S, INT pin)

APPLICATION

Electric household appliances, consumer electronics products (mouse, etc.)

Product	ROM (PROM) size $(\times 9$ bits)	RAM size $(\times 4$ bits $)$	Package	ROM type
M34250M2-XXXFP	2048 words	64 words	20P2N-A	Mask ROM
M34250E2-XXXFP *	2048 words	64 words	20P2N-A	One Time PROM

*: Shipped after writing (shipped in blank: M34250E2FP)

PIN CONFIGURATION (TOP VIEW)

M34250M2-XXXFP

Outline 20P2N-A

PERFORMANCE OVERVIEW

Parameter			Function
Number of basic instructions			70
Minimum instruction execution time			$1.0 \mu \mathrm{~s}$ (at 4.0 MHz system clock frequency) (Refer to the electrical characteristics because the minimum instruction execution time depends on the supply voltage.)
Memory sizes	ROM	$\begin{aligned} & \text { M34250M2/ } \\ & \text { E2 } \end{aligned}$	2048 words $\times 9$ bits
	RAM		64 words $\times 4$ bits
Input/Output ports	D0-D3	I/O	Four independent I/O ports; ports D2 and D3 are also used as ports C and K, respectively.
	S0-S3	I/O	4-bit I/O port
	C	I/O	1-bit I/O port; port C is also used as port D2.
	K	I/O	1-bit I/O port; port K is also used as port D3.
	Fo, F1	I/O	2-bit I/O port
	G0-G3	I/O	4-bit I/O port; ports Go and G1 are also used as pins INT and Tout.
	INT	Input	Interrupt input; INT pin is also used as port Go.
	Tout	Output	Timer output; Tоut pin is also used as port G1.
Timer	Timer 1		8-bit timer with a reload register
Interrupt	Sources		2 (one for external and one for timer)
	Nesting		1 level
Oscillation circuit			CR oscillation circuit (a capacitor and a resistor connected externally) Frequency error: ± 17 \% (VDD $=5 \mathrm{~V} \pm 10 \%, \mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$, the error of the external capacitor and resistor excluded)
Subroutine nesting			4 levels
Device structure			CMOS silicon gate
Package			20-pin plastic molded SOP (20P2N-A)
Operating temperature range			$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply voltage			2.2 V to 5.5 V (Refer to the electrical characteristics because the supply voltage depends on the system clock frequency.)
Power dissipation (typical value)	Active mode		1.5 mA (at 4.0 MHz system clock frequency, $\mathrm{VDD}=5 \mathrm{~V}$, output transistors in the cut-off state)
	RAM back-up mode		$0.1 \mu \mathrm{~A}$ (at room temperature, $\mathrm{V} \mathrm{DD}=5 \mathrm{~V}$, output transistors in the cut-off state)

PIN DESCRIPTION

\left.	Pin	Name	Input/Output	Function
VoD	Power supply	-	Connected to a plus power supply.	
Vss	Ground	-	Connected to a O V power supply.	
CNVss	CNVss	-	Connect CNVss to Vss and apply "L" (OV) to CNVss certainly.	
RESET	Reset input	Input	Reset pulse input pin	
XIN	System clock input	Input	I/Opins of the system clock generating circuit. Connect pins Xin and Xout directly.	
Xout	System clock output	Output	Then, pull up XIn pin through a resistor and pull down Xout pin through a capacitor.	$\right\}$

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction
G_{0}	INT	INT (Note 2)	G_{0}
G_{1}	Tout	C	Tout (Note 2)
G_{1}			
D_{2}	C (Note 2)	D_{2}	
D_{3}	K	K (Note 2)	D_{3}

Notes 1: Pins except above have just single function.
2: The I/O of ports D_{2}, D_{3} and G_{0}, and the input of port G_{1} can be used even when ports C and K and pins INT and Tout are selected.

CONNECTIONS OF UNUSED PINS

Pin	Connection	Pin	Connection
F_{0}, F_{1}	Connect to Vss pin.	$\mathrm{D}_{0}, \mathrm{D}_{1}$	Connect to Vss pin.
$\mathrm{G}_{1} /$ INT, $\mathrm{G}_{1} /$ Tout $\mathrm{G}_{2}, \mathrm{G}_{3}$	Open or connect to Vss pin. (Note 1)		$\mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$
$\mathrm{S}_{0}-\mathrm{S}_{3}$	Connect to Vss pin. (Note 2)		Open or connect to Vss pin. (Note 3)

Notes 1: When pins Go/INT, G1/Tout, G2 and G3 are connected to Vss pin, turn off their pull-up transistors (Pull-up control register PU0 $=$ " $\times 0_{2}$ ") and also invalidate the key-on wakeup functions of pins $\mathrm{G}_{1} /$ Tout, G_{2} and G_{3} (Key-on wakeup contorl register $\mathrm{K} 0=$ " $\mathrm{X} \times 0 \times 2$ ") by software. When the POF instruction is executed while these pins are connected to Vss and the key-on wakeup functions are left valid, the system returns from RAM back-up state by recognizing the return condition immediately after going into the RAM back-up state. When these pins are open, turn on their pull-up transistors (Pull-up control register $P U 0=" \times 12$ ") by software.

2: When ports $\mathrm{S}_{0}-\mathrm{S}_{3}$ are connected to Vss pin, invalidate the key-on wakeup functions (Key-on wakeup contorl register $\mathrm{KO}=$ " $\mathrm{XXXO} \mathrm{z}^{2}$ ") by software. When the POF instruction is executed while these pins are connected to Vss and the key-on wakeup functions are left valid, the system returns from RAM back-up state by recognizing the return condition immediately after going into the RAM back-up state.

3: When ports D_{2} / C and D_{3} / K are connected to $V s s$ pin, turn off their pull-up transistors (register $P U 0=$ " $0 X_{2}$ ") by software. When these pins are open, turn on their pull-up transistors (register PU0=" 1×2 ") by software.
(Note when connecting to Vss and VDD)

- Connect the unused pins to $V_{S S}$ or $V_{D D}$ at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/ Output	Output structure	Control bits	Control instructions	Control registers	Remark
Port D	Do, D1	I/O(4)	N-channel open-drain	1	SD RD SZD CLD SCP RCP SNZCP OKA IAK	PU0	Pull-up function (programmable)
	D2/C						
	D3/K						
Port S	So-S3	I/O (4)	N-channel open-drain	4	$\begin{aligned} & \text { OSA } \\ & \text { IAS } \\ & \text { LGOP } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { KO } \\ \text { LO } \end{array}$	Logic operation function (programmable) Key-on wakeup functions (programmable)
Port G	Go/INT	$\begin{aligned} & \text { I/O } \\ & (4) \end{aligned}$	N-channel open-drain	4	$\begin{array}{\|l} \hline \text { OGA } \\ \text { IAG } \end{array}$	$\mathrm{P} \cup 0, \mathrm{KO}$	Pull-up functions Key-on wakeup functions (only pull-up function is programmable)
	G1/Tout					$\begin{array}{\|l\|} \hline \text { PU0, K0 } \\ \text { V1 } \\ \hline \end{array}$	Pull-up functions (programmable)
	G2, G3					PU0, K0	Key-on wakeup functions (programmable)
Port F	Fo, F1	I/O (2)	N-channel open-drain	2	$\begin{array}{\|l\|l\|} \hline \text { OFA } \\ \hline \end{array}$		

DEFINITION OF CLOCK AND CYCLE

- System clock

This is the source clock input to the XIN pin. Connect pins XIN and Xout directly. Then, pull up Xin pin through a resistor and pull down Xout pin through a capacitor.

- Instruction clock

The instruction clock is a signal derived by dividing the system clock by 4 , and is the basic clock for controlling this product.

- Machine cycle

One machine cycle is the time required to execute the minimum instruction (one-cycle instruction). The machine cycle is equivalent to the instruction clock cycle.

I/O PORT

(1) Port $\mathrm{D}\left(\mathrm{D}_{0}-\mathrm{D}_{3}\right)$

Each pin of port D has an independent 1-bit wide I/O function. Each pin has an output latch. For input/output of ports Do-D3, select one of port D with the register Y of data pointer first. For input use, set the latch of the specified bit to "1." All port D output latches can be set to " 1 " with the CLD instruction. The output structure is the N -channel open-drain. Ports D_{2} and D_{3} are also used as ports C and K , respectively. Accordingly, when port D_{2} / C is used as port D_{2}, set the port C output latch to "1." When port $\mathrm{D}_{3} / \mathrm{K}$ is used as port D_{3}, set the port K output latch to "1."

(2) Port C

1-bit I/O port.
Port C output latch can be set to " 1 " with the SCP instruction. Port C output latch can be cleared to " 0 " with the RCP instruction. Port C input level can be examined by executing the skip (SNZCP) instruction. For input use, set the latch of the specified bit to "1." The output structure is the N-channel open-drain. The pull-up transistor of port C is turned on when the bit 1 of register PU0 is set to " 1 " by software. Port C is also used as port D 2. Accordingly, when port D / C is used as port C , set the port D2 output latch to "1."

(3) Port K

1-bit I/O port.
For input use, set the latch of the specified bit to "1." The output structure is the N -channel open-drain. The pull-up transistor of port K is turned on when the bit 1 of register PU0 is set to " 1 " by software. Port K is also used as port D_{3}. Accordingly, when port $\mathrm{D}_{3} / \mathrm{K}$ is used as port K , set the port D3 output latch to " 1 ."
(4) Port G (Go-G3)

4-bit I/O port.
For input use, set the latch of the specified bit to "1." The output structure is the N -channel open-drain. The pull-up transistor of port G is turned on when the bit 0 of register PUO is set to "1" by software. Ports G_{0} and G_{1} are also used as INT pin and Tout pin, respectively.

Pull-up control register

Pull-up control register PU0		at reset :002		at RAM back-up : state retained	W
PU01	Ports C and K pull-up transistor control bit	0	Pull-up transistor OFF		
PU00	Ports Go-G3 pull-up transistor control bit	1	Pull-up transistor ON		

Note: "W" represents write enabled.

(5) Port F (F0, F1)

2-bit I/O port.
For input use, set the latch of the specified bit to "1." The output structure is the N -channel open-drain.
(6) Port $\mathrm{S}\left(\mathrm{S}_{0}-\mathrm{S}_{3}\right)$

4-bit I/O port.
Port S has the logic operation (LGOP) function. For input (logic operation included) use, set the latch of the specified bit to "1." The output structure is the N-channel open-drain. When performing the logic operation, select the logic operation function with the logic operation selection register LO. Set the contents of register LO through register A with the TLOA instruction.
When the LGOP instruction is executed, the logic operation selected with the register LO is performed between the contents of register A and the contents of port S, and its result is stored in register A.

Logic operation selection register

\left.| Logic operation selection register LO | | at reset : 002 | | | at RAM back-up : 002 |
| :---: | :---: | :---: | :---: | :---: | :---: |$\right]$ W

[^0]
PORT BLOCK DIAGRAMS

Applied potential to ports Do, D1, F0, F1, So-S3 must be 7 V or less.
Applied potential to ports D_{2}, D3 must be VDD or
2: i represents $0,1,2$ or 3.
3: j represents 0 or 1 .

PORT BLOCK DIAGRAMS (CONTINUED)

Notes 1: -------- This symbol represents a parasitic diode
Applied potential to ports G0-G3 must be Vdd or less
2: k represents 2 or 3 .

FUNCTION BLOCK OPERATIONS
 CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.
(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
Carry flag CY is a 1 -bit flag that is set to " 1 " when there is a carry with the AMC instruction (Figure 1).
It is unchanged with both A n instruction and AM instruction. The value of A_{0} is stored in carry flag CY with the RAR instruction (Figure 2).
Carry flag CY can be set to "1" with the SC instruction and cleared to " 0 " with the RC instruction.
(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4bit data, and for 8 -bit data transfer together with register A .
Register E is an 8 -bit register. It can be used for 8 -bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).
(4) Register D

Register D is a 3-bit register.
It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

Fig. 4 TABP p instruction execution example
(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 4 levels are exceeded.
The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).
Figure 5 shows the stack registers (SKs) structure.
Figure 6 shows the example of operation at subroutine call.
(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag and skip flag just before an interrupt until returning to the original routine.
Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

SK0	$(\mathrm{SP})=0$
SK1	$(\mathrm{SP})=1$
SK2	$(\mathrm{SP})=2$
SK3	$(\mathrm{SP})=3$

Stack pointer (SP) points " 3 " at reset or returning from RAM back-up mode. It points " 0 " by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used $((S P)=3),(S P)=0$ and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

Note: Returning to the BM instruction execution address with the RT instruction, and the BM instruction is equivalent to the NOP instruction.

Fig. 6 Example of operation at subroutine call
(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.
Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).
Make sure that the PC does not exceed after the last page of the built-in ROM.
(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y . Register X specifies a file and register Y specifies a RAM digit (Figure 8).
Register Y is also used to specify the port D bit position.
When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure $9)$.

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34250M2.

Table 1 ROM size and pages

Product	ROM size ($\times 9$ bits)	Pages
M34250M2	2048 words	$16(0$ to 15$)$
M34250E2		

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.
Page 2 (addresses 010016 to $017 \mathrm{~F}_{16}$) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1 -word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.
ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the $\mathrm{SB} \mathrm{j}, \mathrm{RB} \mathrm{j}$, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.
Table 2 shows the RAM size. Figure 12 shows the RAM map.
Table 2 RAM size

Product	RAM size
M34250M2	64 words $\times 4$ bits $(256$ bits $)$
M34250E2	

Fig. 10 ROM map of M34250M2

Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit ="1"
(interrupt request occurrence enabled)
- Interrupt enable flag (INTE) = "1" (interrupt enabled)

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)
(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to " 1 " with the El instruction and disabled when INTE flag is cleared to " 0 " with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to " 0 ," so that other interrupts are disabled until the El instruction is executed.
(2) Interrupt enable bit (V10, V11)

Use an interrupt enable bit of interrupt control register V1 to select the corresponding interrupt or skip instruction.
Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.
Table 5 shows the interrupt enable bit function.
(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.
Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.
Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.
If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 2 in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Enable bit	Skip instruction
External interrupt	EXF0	V10	SNZ0
Timer 1 interrupt	T1F	V11	SNZ1

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt request	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)

INTE flag is cleared to " 0 " so that interrupts are disabled.

- Interrupt request flag

Only the request flag for the current interrupt source is cleared to "0."

- Data pointer, carry flag and skip flag The contents of these pointer and flags are stored automatically in the interrupt stack register (SDP).
(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return to main routine. Interrupt enabled by executing the El instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the El instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

Fig. 13 Program example of interrupt processing

- Program counter (PC) \qquad Each interrupt address
- Stack register (SK)

The address of main routine to be executed when returning

- Interrupt enable flag (INTE) \qquad 0 (Interrupt disabled)
- Interrupt request flag (only the flag for the current interrupt source)
- Data pointer, carry flag, skip flag Stored in the interrupt stack register (SDP) automatically

Fig. 14 Internal state when interrupt occurs

Fig. 15 Interrupt system diagram

(6) Control register related to interrupt

- Timer control register V1

Interrupt enable bits of external and timer 1 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Table 6 Control register related to interrupt

Timer control register V1		at reset : 00002		at RAM back-up : 00002	R/W
V13	$\mathrm{G}_{1 / \text { Tout pin function selection bit }}$	0	Port G1 (I/O)		
		1	Tout pin (output)/port G1(input)		
V12	Prescaler/timer 1 operation start bit	0	Prescaler stop (initial state) / timer 1 stop (state retained)		
		1	Prescaler / timer 1 operation		
V11	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External interrupt enable bit	0	Interrupt disabled (SNZO instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts occur only when the respective INTE flag, interrupt enable bits ($\mathrm{V} 10, \mathrm{~V} 11$), and interrupt request flags (EXF0, T1F) are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The
interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

Notes 1: The address is stacked to the last cycle.
2: This interval of cycles depends on the executed instruction at the time when each interrupt activated condition is satisfied.

Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4250 Group has an external interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).
The external interrupt can be controlled with the key-on wakeup control register K0.

Table 7 External interrupt activated condition

Name	Input pin	Valid waveform	Valid waveform selection bit(K02)
External interrupt	Go/INT	Falling waveform ("H" \rightarrow " L ")	1
		Rising waveform (" L " \rightarrow "H")	0

Fig. 17 External interrupt circuit structure

(1) External interrupt request flag (EXF0)

External interrupt request flag (EXF0) is set to " 1 " when a valid waveform is input to Go/INT pin.
The valid waveforms causing the interrupt must be retained at their level for 5 cycles or more of $f($ XIN) (Refer to Figure 16).

The state of EXFO flag can be examined with the skip instruction (SNZ0). Use the timer control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External interrupt activated condition External interrupt activated condition is satisfied when a valid waveform is input to $\mathrm{Go} / \mathrm{INT}$ pin.
The valid waveform can be selected from rising waveform or falling waveform. An example of how to use the external interrupt is as follows.
(1) Select the valid waveform with the bit 2 of register KO.
(2) Clear the EXFO flag to "0" with the SNZO instruction.
(3) Set the NOP instruction for the case when a skip is performed with the SNZO instruction.
(4) Set both the external interrupt enable bit (V10) and the INTE flag to "1."

The external interrupt is now enabled. Now when a valid waveform is input to the Go/INT pin, the EXFO flag is set to " 1 " and the external interrupt occurs.

(2) Control register related to external interrupt

- Key-on wakeup control register K0 Register K0 controls the valid waveform for the external interrupt and key-on wakeup function. Set the contents of this register through register A with the TKOA instruction. The TAKO instruction can be used to transfer the contents of register K 0 to register A .

Table 8 Control register related to external interrupt

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W
K03	Prescaler dividing ratio selection bit	0	Instruction clock divided by 4		
		1	Instruction clock divided by 512		
K02	Interrupt valid waveform for INT pin/ key-on wakeup valid waveform selection bit (Note 2)	0	Rising waveform ("L" \rightarrow " ${ }^{\text {" }}$)		
		1	Falling waveform ("H" \rightarrow "L")		
K01	Ports G1-G3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		
KOo	Ports So-S3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Set a value to the bit 2 of register K0, and execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction. According to the input state of Go/INT pin, the external interrupt request flag (EXFO) may be set to " 1 " when the interrupt valid waveform is changed.

TIMERS

The 4250 Group has the programmable timer.

- Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to $n+1$), a timer interrupt request flag is set to " 1 ," new data is loaded from the reload register, and count continues (auto-reload function).

Fig. 18 Auto-reload function

The 4250 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer with the interrupt function

These timers can be controlled with the timer control register V1 and key-on wakeup control register K0.
Each function is described below.
Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	Instruction clock	4,512	• Timer 1 count source	V1 K0
Timer 1	8-bit programmable binary down counter	Prescaler output (ORCLK)	1 to 256	• Tout pin - Timer 1 interrupt	V1

Fig. 19 Timers structure

$$
\begin{aligned}
& \text { MITSUBISHI MICROCOMPUTERS } \\
& 4250 \text { Group }
\end{aligned}
$$

Table 10 Control registers related to timer

Timer control register V1		at reset : 00002		at RAM back-up : 00002	R/W
V13	G1/Tout pin function selection bit	0	Port G1 (I/O)		
		1	Tout pin (output)/port G1 (input)		
V12	Prescaler/timer 1 operation start bit	0	Prescaler stop (initial state) / timer 1 stop (state retained)		
		1	Prescaler / timer 1 operation		
V11	Timer 1 interrupt enable bit	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External interrupt enable bit	0	Interrupt disabled (SNZO instruction is valid)		
		1	Interrupt enabled (SNZO instruction is invalid)		
Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W
KO 3	Prescaler dividing ratio selection bit	0	Instruction clock divided by 4		
		1	Instruction clock divided by 512		
K02	Interrupt valid waveform for INT pin/ key-on wakeup valid waveform selection bit (Note 2)	0	Rising waveform ("L" \rightarrow " ${ }^{\text {H") }}$		
		1	Falling waveform ("H" \rightarrow " L ")		
K01	Ports G1-G3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		
K00	Ports S0-S3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Set a value to the bit 2 of register K0, and execute the SNZO instruction to clear the EXFO flag to "0" after executing at least one instruction. According to the input state of Go/INT pin, the external interrupt request flag (EXFO) may be set to " 1 " when the interrupt valid waveform is changed.

(1) Control registers related to timer

- Timer control register V1
$\mathrm{G}_{1 / \text { Tout pin }}$ function selection bit and prescaler/timer 1 operation start bit are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V 1 to register A .
- Key-on wakeup control register K0

Prescaler dividing ratio selection bit is assigned to register KO. Set the contents of this register through register A with the TKOA instruction. The TAK0 instruction can be used to transfer the contents of register K0 to register A .

(2) Precautions

Note the following for the use of timers.

- Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

- Reading the count value

Stop timer 1 counting and then execute the TAB1 instruction to read its data.

(3) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock.
Use the bit 3 of register K0 to select the prescaler dividing ratio and the bit 2 of register V1 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 2 of register V1 is cleared to " 0 ."
(4) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.
Timer 1 starts counting after the following process;
(1) set data in timer 1, and
(2) set the bit 2 of register V 1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes " 0 "), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (autoreload function).
When a value set in reload register $R 1$ is n, timer 1 divides the count source signal by $n+1(n=0$ to 255$)$.
Data can be read from timer 1 to registers A and B with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction. Timer 1 underflow signal divided by 2 can be output from $\mathrm{G}_{1} /$ Tout pin.
(5) Timer output pin ($\mathrm{G}_{1} /$ Tout)

Timer output pin ($\mathrm{G}_{1} /$ Tout) has the function to output the timer 1 underflow signal divided by 2 . The selection of $\mathrm{G}_{1} /$ Tout pin function can be controlled with the bit 3 of register V 1 .
(6) Timer interrupt request flag (T1F)

Timer interrupt request flag is set to "1" when the timer underflows. The state of this flag can be examined with the skip instruction (SNZ1).
Use the register V 1 to select an interrupt or a skip instruction. T1F flag is cleared to " 0 " when an interrupt occurs or when the next instruction is skipped with a skip instruction.

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

- the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0 .

Fig. 20 Reset release timing

Fig. $21 \overline{\text { RESET }}$ pin input waveform and reset operation
(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by connecting a resistor, a diode, and a capacitor to RESET pin. Connect RESET pin and the external circuit at the shortest distance.

Fig. 22 Power-on reset circuit example

(2) Internal state at reset

Table 11 shows port state at reset, and Figure 23 shows internal state at reset (they are retained after system is released from reset).

Table 11 Port state at reset

Name	Function	State
Do, $\mathrm{D}_{1}, \mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$	Do, D1, D2/C, $\mathrm{D}_{3} / \mathrm{K}$	High impedance (Note)
S0-S3	S0-S3	
Go/INT, G1/Tout	Go/INT, G1	
G2, G3	G2, G3	
$\mathrm{F}_{0}, \mathrm{~F}_{1}$	$\mathrm{F}_{0}, \mathrm{~F}_{1}$	

Note: Output latch is set to "1."

The contents of timers, registers, flags and RAM except shown in Figure 23 are undefined, so set the initial value to them.

Address 0 in page 0 is set to program counter.											
- Interrupt enable flag (INTE)	0 (Interrupt disabled)										
- Power down flag (P)	0										
- External interrupt request flag (EXF0)	0										
- Timer 1 interrupt request flag (T1F)	0										
- Timer control register V1	0 0		0	0							
	(Interrupt disabled, prescaler/timer 1 stopped)										
- Key-on wakeup control register K0	0 0 0 0										
- Pull-up control register PU0	0 0										
- Logic operation selection register LO	0 0										
- Carry flag (CY)	0										
- Register A.	1 1 1		1	1							
- Register B.	1 1 1		1	1							
- Stack pointer (SP)	1 1										

Fig. 23 Internal state at reset

RAM BACK-UP MODE

The 4250 Group has the RAM back-up mode.
When the POF instruction is executed continuously, system enters the RAM back-up state.
As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM. Table 12 shows the function and states retained at RAM back-up. Figure 24 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.
(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction continuously, the CPU starts executing the software from address 0 in page 0 . In this case, the P flag is " 1 ."
(3) Cold start condition

The CPU starts executing the software from address 0 in page 0 when reset pulse is input to RESET pin.
In this case, the P flag is " 0 ."
(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 13 shows the return condition for each return source.

Table 12 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B, carry flag (CY), stack pointer (SP) (Note 2)	\times
Contents of RAM	O
Port	\times
Timer control register V1	\times
Timer 1 function	\times
Pull-up control register PU0	O
Key-on wakeup control register K0	\times
Logic operation selection register LO	\times
External interrupt request flag (EXF0)	\times
Timer 1 interrupt request flag (T1F)	\times
Interrupt enable flag (INTE)	

Notes 1: "O" represents that the function can be retained, and " X " represents that the function is initialized.
Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
2:The stack pointer (SP) points the level of the stack register and is initialized to " 3 " at RAM back-up.

Table 13 Return source and return condition

Return source	Return condition	Remarks
Go/INT pin	Return by an external rising edge input ("L" "H") or falling edge input ("H" \rightarrow " L "). The EXF0 flag is not set.	Select the return edge (rising edge or falling edge) with the bit 2 of register K0 according to the external state before going into the RAM back-up state.
Ports G1-G3 $S_{0}-S_{3}$	Return by an external "L" level input.	Set the port using the key-on wakeup function selected with register K0 to "H" level before going into the RAM back-up state.

Note: Go/INT pin and ports $\mathrm{G}_{1}-\mathrm{G}_{3}, \mathrm{~S}_{0}-\mathrm{S}_{3}$ share the circuit which is used to detect the edge and to recognize "L" level.
The Go/INT pin cannot be set to "no key-on wakeup."
(5) Key-on wakeup control register K0

- Key-on wakeup control register K0

The interrupt valid waveform for INT pin/key-on wakeup valid waveform selection bit, the ports $\mathrm{G}_{1}-\mathrm{G}_{3}$ key-on wakeup control bit and the ports $\mathrm{S}_{0}-\mathrm{S}_{3}$ key-on wakeup control bit are assigned to the register K0. Set the contents
of this register through register A with the TKOA instruction. The TAK0 instruction can be used to transfer the contents of register K 0 to register A .

Table 14 Key-on wakeup control register

Key-on wakeup control register K0		at reset : 00002		at RAM back-up : state retained	R/W
K03	Prescaler dividing ratio selection bit	0	Instruction clock divided by 4		
		1	Instruction clock divided by 512		
KO 2	Interrupt valid waveform for INT pin/ key-on wakeup valid waveform selection bit (Note 2)	0	Rising waveform ("L" \rightarrow "H")		
		1	Falling waveform ("H" \rightarrow "L")		
K01	Ports G1-G3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		
K00	Ports So-S3 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used ("L" level recognized)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Set a value to the bit 2 of register K0, and execute the SNZO instruction to clear the EXFO flag after executing at least one instruction. According to the input state of Go/INT pin, the external interrupt request flag (EXF0) may be set when the interrupt valid waveform is changed.

Stabilizing time (a) : Microcomputer starts its operation after 3584 to 3585 machine cycles for the time required to stabilize the $f(X I N)$ oscillation.

Fig. 24 State transition

Fig. 25 Set source and clear source of the P flag
 instruction

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- System clock generating circuit
- Control circuit to stop the clock oscillation
- Control circuit to return from the RAM back-up state

Note: The wait time control circuit is used to start the microcomputer operation after 3584 to 3585 machine cycles for the time required to stabilize the $f(X I N)$ oscillation.

Fig. 27 Clock control circuit structure

Clock signal $f\left(X_{\text {IN }}\right)$ is obtained by connecting Xin pin and Xout pin directly, and externally connecting a resistor to Xin and a capacitor to Xout. Connect this external circuit to pins Xin and Xout at the shortest distance.
When an external clock signal is input, note the input waveform (refer to the list of precaution).

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.
(1) M34250M2-XXXFP Mask ROM Order Confirmation Form
(2) Data to be written into mask ROM \qquad EPROM (three sets containing the identical data)
(3) Mark Specification Form \qquad 1

Fig. 28 Resistor and capacitor external circuit

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. $0.01 \mu \mathrm{~F}$) between pins Vdd and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use the thickest wire.

In the One Time PROM version, CNVss pin is also used as Vpp pin. Connect this pin to Vss through the resistor about $5 \mathrm{k} \Omega$ which is assigned to CNVss/VPP pin as close as possible at the shortest distance.
(2) Prescaler

Stop the prescaler operation to change its frequency dividing ratio.
(3) Timer count source

Stop timer 1 counting to change its count source.
(4) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(5) Go/INT pin

When the interrupt valid waveform of the Go/INT pin is changed with the bit 2 of register K0 in software, be careful about the following notes.

- After clear the bit 0 of register V1 to "0" (Figure 29(1), change the interrupt valid waveform of $\mathrm{G}_{0} /$ INT pin with the bit 2 of register K0.
- Set a value to bit 2 of register K0 and execute the SNZO instruction to clear the external interrupt request flag (EXF0) after executing at least one instruction (refer to Figure 29(2). Depending on the input state of the Go/INT pin, the EXF0 flag may be set when the interrupt valid waveform is changed.
:
LA 4 ; $(\times \times \times 02)$
TV1A
; The SNZO instruction is valid \qquad (1)

LA 4
TKOA ; Change of the interrupt valid waveform
NOP
; The SNZO instruction is executed
SNZ0 NOP
\times : this bit is not related to the setting of $\mathrm{Go} / \mathrm{INT}$ pin.

Fig. 29 External interrupt program example
(6) Notes on unused pins

- When pins $\mathrm{G}_{0} /$ INT, $\mathrm{G}_{1} /$ Tout, G_{2} and G_{3} are connected to Vss pin, turn off their pull-up transistors (register PU0=" $\times 02$ ") and also invalidate the key-on wakeup functions of pins $\mathrm{G}_{1} /$ Tout, G_{2} and G_{3} (register $\mathrm{K} 0=" \times \times 0 \times 2$ ") by software. When the POF instruction is executed while these pins are connected to Vss and the key-on wakeup functions are left valid, the system returns from RAM back-up state by recognizing the return condition immediately after going into the RAM back-up state. When these pins are open, turn on their pull-up transistors (register $\mathrm{PU} 0=" \times 12$ ") by software.
- When ports So-S3 are connected to Vss pin, invalidate the key-on wakeup functions (register $\mathrm{K} 0=$ " $\times \times \times 02$ ") by software. When the POF instruction is executed while these pins are connected to Vss and the key-on wakeup functions are left valid, the system returns from RAM back-up state by recognizing the return condition immediately after going into the RAM back-up state.
- When ports D_{2} / C and D_{3} / K are connected to Vss pin, turn off their pull-up transistors (register PU0="0×2") by software. When these pins are open, turn on their pull-up transistors (register PU0=" 1×2 ") by software.
(Note when connecting to $V_{S S}$ and VDD)
- Connect the unused pins to Vss or VDD at the shortest distance (within 20 mm) and use the thick wire against noise.

Multifunction

- Go/INT pin can be also used as an I/O port Go even when it is used as INT pin.
- $\mathrm{G}_{1} /$ Tout pin can be also used as input port G_{1} even when it is used as Tout pin.
- $\quad D_{2} / C$ pin can be also used as I/O port D_{2} even when it is used as port C.
- D3/K pin can be also used as I/O port D3 even when it is used as port K.
(8) Key-on wakeup

When system returns from RAM back-up state by using the Go/INT pin, select the return edge (rising edge or falling edge) with the bit 2 of register K0 according to the external state before going into the RAM back-up state.
When system returns from RAM back-up state by using the ports $\mathrm{G}_{1}-\mathrm{G}_{3}$ and $\mathrm{S}_{0}-\mathrm{S}_{3}$, set the port using the key-on wakeup function selected with register K0 to "H" level before going into the RAM back-up state.
$\mathrm{G}_{0} /$ INT pin and ports $\mathrm{G}_{1}-\mathrm{G}_{3}, \mathrm{~S}_{0}-\mathrm{S}_{3}$ share the circuit which is used to detect the edge and to recognize "L" level.
The Go/INT pin cannot be set to "no key-on wakeup."
(9) External clock input waveform

When the external clock is used, open Xout pin, and input the clock waveform into XIN pin shown below. (Refer to Figure 30)
-Duty ratio = 50 \%.
-"H" level input voltage=VDD (V), "L" level input voltage=Vss (V).

Fig. 30 External clock input waveform
(10) CR oscillation constant

Use the external 30 pF capacitor and enable to change the frequency by the external resistor.
Test the system sufficiently because the oscillation constant depends on the ROM type (mask ROM or PROM).

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
A	Register A (4 bits)	D	Port D (4 bits)
B	Register B (4 bits)	F	Port F (2 bits)
DR	Register D (3 bits)	G	Port G (4 bits)
E	Register E (8 bits)	S	Port S (4 bits)
V1	Timer control register V1 (4 bits)	K	Port K (1 bit)
K0	Key-on wakeup control register K0 (4 bits)	C	Port C (1 bit)
PU0	Pull-up control register PU0 (2 bits)		
LO	Logic operation selection register LO (2 bits)	x	Hexadecimal variable
		y	Hexadecimal variable
X	Register X (2 bits)	p	Hexadecimal variable
Y	Register Y (4 bits)	n	Hexadecimal constant which represents the
DP	Data pointer (6 bits)		immediate value
	(It consists of registers X and Y)	j	Hexadecimal constant which represents the
PC	Program counter (11 bits)		immediate value
РСН	High-order 4 bits of program counter	$\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$	Binary notation of hexadecimal variable A
PCL	Low-order 7 bits of program counter		(same for others)
SK	Stack register (11 bits $\times 4$)		
SP	Stack pointer (2 bits)	\leftarrow	Direction of data movement
CY	Carry flag		Data exchange between a register and memory
R1	Timer 1 reload register		Decision of state shown before "?"
T1	Timer 1	()	Contents of registers and memories
T1F	Timer 1 interrupt request flag		Negate, Flag unchanged after executing
INTE	Interrupt enable flag		instruction
EXFO	External interrupt request flag	M(DP)	RAM address pointed by the data pointer
P	Power down flag	a	Label indicating address a6 а5 $\mathrm{a}_{4} \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1}$ a0
		p, a	Label indicating address a6 а5 а4 аз a2 a1 ao in page p3 p2 p1 po
		C	Hex. C + Hex. number x (also same for others)
		+	
		x	

Note: The 4250 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes " 1 " if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

LIST OF INSTRUCTION FUNCTION (CONTINUED)

INSTRUCTION CODE TABLE

	-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	$\begin{gathered} 10000 \\ 1 \\ 10111 \end{gathered}$	$\begin{aligned} & 11000 \\ & 11111 \end{aligned}$
$\begin{gathered} \text { D3- } \\ \text { D0 } \\ \hline \end{gathered}$	Hex. notation	00	01	02	03	04	05	06	07	08	09	OA	0B	OC	0D	0E	0F	10 to 17	18 to 1P
0000	0	NOP	BLA	$\begin{gathered} \text { SZB } \\ 0 \\ \hline \end{gathered}$	BL	-	BMLA	$\begin{gathered} \text { XAM } \\ 0 \end{gathered}$	BML	OGA	$\begin{array}{\|c} \hline \text { TABP } \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{A} \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \text { LA } \\ 0 \end{gathered}$	$\begin{array}{\|r} \hline \text { LXY } \\ 0,0 \\ \hline \end{array}$	$\begin{array}{\|r} \hline \text { LXY } \\ 1,0 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,0 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{LXY} \\ 3,0 \\ \hline \end{array}$	BM	B
0001	1	BA	CLD	$\begin{gathered} \text { SZB } \\ 1 \end{gathered}$	BL	LGOP	-	$\begin{gathered} \text { XAM } \\ 1 \end{gathered}$	BML	OKA	$\begin{array}{\|c} \text { TABP } \\ 1 \end{array}$	$\begin{aligned} & \text { A } \\ & 1 \end{aligned}$	$\begin{gathered} \text { LA } \\ 1 \end{gathered}$	$\begin{array}{\|r} \text { LXY } \\ 0,1 \end{array}$	$\begin{array}{\|r\|r\|} \text { LXY } \\ 1,1 \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,1 \end{array}$	$\begin{array}{\|r} \text { LXY } \\ 3,1 \end{array}$	BM	B
0010	2	-	-	$\begin{gathered} \text { SZB } \\ 2 \\ \hline \end{gathered}$	BL	-	-	$\begin{gathered} \text { XAM } \\ 2 \end{gathered}$	BML	SCP	$\begin{gathered} \text { TABP } \\ 2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & 2 \end{aligned}$	$\begin{gathered} \text { LA } \\ 2 \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{LXY} \\ 0,2 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,2 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,2 \\ \hline \end{array}$	$\begin{array}{\|r} \text { LXY } \\ 3,2 \end{array}$	BM	B
0011	3	SNZP	INY	$\begin{gathered} \text { SZB } \\ 3 \end{gathered}$	BL	-	-	$\begin{gathered} \text { XAM } \\ 3 \end{gathered}$	BML	RCP	$\begin{array}{\|c} \text { TABP } \\ 3 \end{array}$	$\begin{aligned} & \text { A } \\ & 3 \end{aligned}$	$\begin{gathered} \text { LA } \\ 3 \end{gathered}$	$\begin{array}{\|r\|r\|} \hline \text { LXY } \\ 0,3 \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,3 \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,3 \end{array}$	$\begin{array}{\|r\|r\|} \text { LXY } \\ 3,3 \end{array}$	BM	B
0100	4	DI	RD	SZD	BL	RT	-	$\begin{gathered} \text { TAM } \\ 0 \end{gathered}$	BML	OFA	$\begin{array}{\|c} \hline \text { TABP } \\ 4 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{A} \\ & 4 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 4 \end{gathered}$	$\begin{array}{r} \text { LXY } \\ 0,4 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,4 \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,4 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 3,4 \\ \hline \end{array}$	BM	B
0101	5	El	SD	SEAn	BL	RTS	IAS	TAM 1	BML	T1AB	$\begin{gathered} \text { TABP } \\ 5 \end{gathered}$	$\begin{aligned} & \text { A } \\ & 5 \end{aligned}$	$\begin{gathered} \text { LA } \\ 5 \end{gathered}$	$\begin{array}{r} \text { LXY } \\ 0,5 \end{array}$	$\begin{array}{\|r\|} \hline \text { LXY } \\ 1,5 \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,5 \end{array}$	$\begin{array}{r\|} \mathrm{LXY} \\ 3,5 \end{array}$	BM	B
0110	6	RC	-	SEAM	BL	RTI	IAF	$\begin{gathered} \text { TAM } \\ 2 \end{gathered}$	BML	TV1A	$\begin{array}{\|c} \text { TABP } \\ 6 \end{array}$	$\begin{aligned} & A \\ & 6 \end{aligned}$	$\begin{gathered} \text { LA } \\ 6 \end{gathered}$	$\begin{array}{r} \text { LXY } \\ 0,6 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,6 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,6 \end{array}$	$\begin{array}{r\|} \mathrm{LXY} \\ 3,6 \end{array}$	BM	B
0111	7	SC	DEY	-	BL	-	IAK	$\begin{array}{\|c} \text { TAM } \\ 3 \end{array}$	BML	TKOA	$\begin{gathered} \text { TABP } \\ 7 \end{gathered}$	$\begin{aligned} & \text { A } \\ & 7 \end{aligned}$	$\begin{gathered} \mathrm{LA} \\ 7 \end{gathered}$	$\begin{array}{r} \text { LXY } \\ 0,7 \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,7 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,7 \\ \hline \end{array}$	$\begin{array}{\|r} \text { LXY } \\ 3,7 \end{array}$	BM	B
1000	8	-	-	IAG	BL	-	TLOA	$\begin{array}{\|c} \text { XAMI } \\ 0 \end{array}$	BML	TAV1	$\begin{gathered} \text { TABP } \\ 8 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & 8 \end{aligned}$	$\begin{gathered} \text { LA } \\ 8 \end{gathered}$	$\begin{array}{r} \text { LXY } \\ 0,8 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,8 \\ \hline \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,8 \\ \hline \end{array}$	$\begin{array}{r} \mathrm{LXY} \\ 3,8 \\ \hline \end{array}$	BM	B
1001	9	-	-	TDA	BL	-	-	$\begin{array}{\|c} \text { XAMI } \\ 1 \end{array}$	BML	TAKO	$\begin{gathered} \text { TABP } \\ 9 \end{gathered}$	$\begin{aligned} & \text { A } \\ & 9 \end{aligned}$	$\begin{gathered} \text { LA } \\ 9 \end{gathered}$	$\begin{array}{\|r} \text { LXY } \\ 0,9 \end{array}$	$\begin{array}{r} \text { LXY } \\ 1,9 \end{array}$	$\begin{array}{r} \text { LXY } \\ 2,9 \end{array}$	$\begin{array}{\|r\|r\|} \text { LXY } \\ 3,9 \end{array}$	BM	B
1010	A	AM	TEAB	TABE	BL	-	-	$\begin{gathered} \text { XAMI } \\ 2 \end{gathered}$	BML	TAB1	$\begin{gathered} \text { TABP } \\ 10 \end{gathered}$	$\begin{gathered} \text { A } \\ 10 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 10 \end{aligned}$	$\begin{gathered} \text { LXY } \\ 0,10 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,10 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,10 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,10 \end{gathered}$	BM	B
1011	B	AMC	OSA	-	BL	-	-	$\begin{gathered} \text { XAMI } \\ 3 \end{gathered}$	BML	TPU0A	$\begin{gathered} \text { TABP } \\ 11 \end{gathered}$	$\begin{gathered} \text { A } \\ 11 \end{gathered}$	$\begin{gathered} \text { LA } \\ 11 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 0,11 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,11 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,11 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,11 \end{gathered}$	BM	B
1100	C	TYA	CMA	-	BL	$\begin{gathered} \text { RB } \\ 0 \end{gathered}$	$\begin{gathered} \text { SB } \\ 0 \end{gathered}$	$\begin{array}{\|c} \hline \text { XAMD } \\ 0 \\ \hline \end{array}$	BML	SNZ1	$\begin{array}{\|c} \hline \text { TABP } \\ 12 \end{array}$	$\begin{gathered} \text { A } \\ 12 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 12 \end{aligned}$	$\begin{gathered} \text { LXY } \\ 0,12 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,12 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,12 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,12 \end{gathered}$	BM	B
1101	D	POF	RAR	-	BL	RB 1	$\begin{gathered} \text { SB } \\ 1 \end{gathered}$	XAMD 1	BML	SNZCP	$\begin{array}{\|c} \text { TABP } \\ 13 \end{array}$	$\begin{gathered} \text { A } \\ 13 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 13 \end{aligned}$	$\begin{gathered} L X Y \\ 0,13 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,13 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,13 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,13 \end{gathered}$	BM	B
1110	E	TBA	TAB	-	BL	$\begin{aligned} & \text { RB } \\ & 2 \end{aligned}$	$\begin{gathered} \text { SB } \\ 2 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { XAMD } \\ 2 \\ \hline \end{array}$	BML	-	$\begin{gathered} \text { TABP } \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ 14 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 14 \\ & \hline \end{aligned}$	$\begin{gathered} \text { LXY } \\ 0,14 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,14 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,14 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,14 \\ \hline \end{gathered}$	BM	B
1111	F	-	TAY	SZC	BL	$\begin{gathered} \mathrm{RB} \\ 3 \end{gathered}$	$\begin{gathered} \mathrm{SB} \\ 3 \end{gathered}$	$\begin{array}{\|c} \text { XAMD } \\ 3 \end{array}$	BML	SNZO	$\begin{array}{\|c} \text { TABP } \\ 15 \end{array}$	$\begin{gathered} \text { A } \\ 15 \end{gathered}$	$\begin{aligned} & \text { LA } \\ & 15 \end{aligned}$	$\begin{gathered} \text { LXY } \\ 0,15 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 1,15 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 2,15 \end{gathered}$	$\begin{gathered} \text { LXY } \\ 3,15 \end{gathered}$	BM	B

The above table shows the relationship between machine language codes and machine language instructions. D3-Do show the low-order 4 bits of the machine language code, and D8-D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown.

The codes for the second word of a two-word instruction are described below.

	The second word		
BL	1	1 a a a	a a a a
BML	1	0 a a a	a a a a
BA	1	1 a a a	a a a a
BLA	1	1 a a a	ppp p
BMLA	1	0 a a a	ppp p
SEA	0	1011	n n n
SZD	0	0010	1011

Do not use the code marked "-."

MACHINE INSTRUCTIONS

Parameter							nstru	uctio	cod					
Type of instructions	Mnemonic		D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	${ }_{\frac{1}{2}}$	¢	Function
	TAB	0	0	0	0	1	1	1	1	0	01 E	1	1	$(\mathrm{A}) \leftarrow(\mathrm{B})$
	TBA	0	0	0	0	0	1	1	1	0	00 E	1	1	$(\mathrm{B}) \leftarrow(\mathrm{A})$
	TAY	0	0	0	0	1	1	1	1	1	01 F	1	1	$(\mathrm{A}) \leftarrow(\mathrm{Y})$
	TYA	0	0	0	0	0	1	1	0	0	00 C	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{A})$
	TEAB		0	0	0		1	0	1	0	01 A	1	1	$\left(\mathrm{E}_{7}-\mathrm{E}_{4}\right) \leftarrow(\mathrm{B})\left(\mathrm{E}_{3}-\mathrm{E}_{0}\right) \leftarrow(\mathrm{A})$
	TABE	0	0	0	1	0	1	0	1	0	02 A	1	1	$(B) \leftarrow\left(E_{7}-E_{4}\right)(A) \leftarrow\left(E_{3}-E_{0}\right)$
	TDA		0	0	1	0	1	0	0		029	1	1	$\left(\mathrm{DR}_{2}-\mathrm{DR}_{0}\right) \leftarrow\left(\mathrm{A}_{2}-\mathrm{A}_{0}\right)$
	LXY x, y	0	1	1	x1	x0	уз	y2	y_{1}	yo	$\begin{gathered} \hline 0 \mathrm{C} y \\ +\mathrm{x} \end{gathered}$	1	1	$\begin{aligned} & (X) \leftarrow x, x=0 \text { to } 3 \\ & (Y) \leftarrow y, y=0 \text { to } 15 \end{aligned}$
	INY		0	0	0	1	0	0	1		013	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})+1$
	DEY	0	0	0	0	1	0	1	1		$\begin{array}{lll}0 & 1\end{array}$	1	1	$(\mathrm{Y}) \leftarrow(\mathrm{Y})-1$

Skip condition		Detailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A .
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
-	-	Transfers the contents of register A to register D.
Continuous description	-	Loads the value x in the immediate field to register X , and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
$(\mathrm{Y})=0$	-	Adds 1 to the contents of register Y . As a result of addition, when the contents of register Y is 0 , the next instruction is skipped.
$(Y)=15$	-	Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition		Detailed description
-	-	After transferring the contents of $\mathrm{M}(\mathrm{DP})$ to register A , an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .
-	-	After exchanging the contents of $\mathrm{M}(\mathrm{DP})$ with the contents of register A , an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X .
$(Y)=15$	-	After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y . As a result of subtraction, when the contents of register Y is 15 , the next instruction is skipped.
$(\mathrm{Y})=0$	-	After exchanging the contents of $M(D P)$ with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X . Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0 , the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Note : p is 0 to 15 for M34250E2, and p is 0 to 15 for M34250M2.

MACHINE INSTRUCTIONS (CONTINUED)

Note : p is 0 to 15 for M34250E2, and p is 0 to 15 for M34250M2.

Skip condition		Detailed description
$\begin{gathered} (\mathrm{Mj}(\mathrm{DP}))=0 \\ \mathrm{j}=0 \text { to } 3 \end{gathered}$	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$. Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP). Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of $M(D P)$ is " 0 ."
$(\mathrm{A})=(\mathrm{M}(\mathrm{DP}))$ $\begin{gathered} (A)=n \\ n=0 \text { to } 15 \end{gathered}$		Skips the next instruction when the contents of register A is equal to the contents of $M(D P)$. Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
-	-	Branch within a page : Branches to address a in the identical page. Branch out of a page: Branches to address a in page p. Branch within a page : Branches to address (a6 a5 a4 $A_{3} A_{2} A_{1} A_{0}$) determined by replacing the loworder 4 bits of the address a with register A in the identical page. Branch out of a page : Branches to address (a6 a5 a4 $A_{3} A_{2} A_{1} A_{0}$) determined by replacing the loworder 4 bits of the address a with register A in page p.

MACHINE INSTRUCTIONS (CONTINUED)

Note : p is 0 to 15 for M34250E2, and p is 0 to 15 for M34250M2.

\begin{tabular}{|c|c|c|}
\hline Skip condition \& \& Detailed description

\hline -

-
-
- \& - \& | Call the subroutine in page 2 : Calls the subroutine at address a in page 2. |
| :--- |
| Call the subroutine : Calls the subroutine at address a in page p . |
| Call the subroutine : Calls the subroutine at address (a6 a5 $a_{4} A_{3} A_{2} A_{1} A_{0}$) determined by replacing the low-order 4 bits of address a with register A in page p. |

\hline Skip at uncondition \& - \& | Returns from interrupt service routine to main routine. |
| :--- |
| Returns each value of data pointer (X, Y), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction to the states just before interrupt. |
| Returns from subroutine to the routine called the subroutine. |
| Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition. |

\hline $$
(E X F O)=1
$$ \& -

- \& | Clears (0) to the interrupt enable flag INTE, and disables the interrupt. |
| :--- |
| Sets (1) to the interrupt enable flag INTE, and enables the interrupt. |
| Skips the next instruction when the contents of EXFO flag is "1." After skipping, clears the EXFO flag. |

\hline
\end{tabular}

MACHINE INSTRUCTIONS (CONTINUED)

	Mnemonic	Instruction code													
			D_{7}	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	${ }_{2}$			Functio
	TAB1	0	1	0	0	0	1	0	1	0	08 A	1	1		$\begin{aligned} & (\mathrm{B}) \leftarrow(\mathrm{T} 17-\mathrm{T} 14) \\ & \mathrm{A}) \leftarrow(\mathrm{T} 13-\mathrm{T} 10) \end{aligned}$
	T1AB	0	1	0	0	0	0	1	0	1	085	1	1		$\begin{aligned} & (\mathrm{R} 11-\mathrm{R} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{T} 17-\mathrm{T} 14) \leftarrow(\mathrm{B}) \\ & (\mathrm{R} 13-\mathrm{R} 10) \leftarrow(\mathrm{A}) \\ & (\mathrm{T} 13-\mathrm{T} 10) \leftarrow(\mathrm{A}) \end{aligned}$
	SNZ1	0	1	0	0	0	1	1	0	0	08 C	1	1		$(\mathrm{T} 1 \mathrm{~F})=1 ?$ After skipping the next instruction $(\mathrm{T} 1 \mathrm{~F}) \leftarrow 0$
	CLD	0	0	0	0	1	0	0	0	1	011	1	1		(D) $\leftarrow 1$
	RD		0	0	0	1	0	1	0	0	014	1	1		$\begin{aligned} & (D(Y)) \leftarrow 0 \\ & (Y)=0 \text { to } 3 \end{aligned}$
	SD	0	0	0	0	1	0	1	0	1	015	1	1		$\begin{aligned} & (\mathrm{D}(\mathrm{Y})) \leftarrow 1 \\ & (\mathrm{Y})=0 \text { to } 3 \end{aligned}$
	SZD			0	1	0	0	1	0			2	2		$\begin{aligned} & (\mathrm{D}(\mathrm{Y}))=0 \text { ? } \\ & (\mathrm{Y})=0 \text { to } 3 \end{aligned}$
			0	0	1	0	1	0	1	1	02 B				

MACHINE INSTRUCTIONS (CONTINUED)

Skip condition		Detailed description
-	-	Outputs the contents of register A to port F.
-	-	Transfers the contents of port F to register A .
-	-	Outputs the contents of register A to port G.
-	-	Transfers the contents of port G to register A.
-	-	Outputs the contents of register A to port S.
-	-	Transfers the contents of port S to register A.
-	-	Outputs the contents of register A to port K.
-	-	Transfers the contents of port K to register A .
-	-	Sets (1) to port C.
-	-	Clears (0) to port C.
$(C)=1$	-	Skips the next instruction when the contents of port C is "1."
-	-	No operation
-	-	Puts the system in RAM back-up state.
$(P)=1$	-	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	-	Transfers the contents of register A to the logic operation selection register LO.
-	-	Transfers the contents of register A to register V1.
-	-	Transfers the contents of register V1 to register A.
-	-	Transfers the contents of register A to register K0.
-	-	Transfers the contents of register K0 to register A.
-	-	Transfers the contents of register A to register PU0.

CONTROL REGISTERS

Timer control register V1		at reset : 00002			at RAM back-up : 00002	R/W
V13	$\mathrm{G}_{1 / \text { Tout pin }}$ function selection bit	0		Port G1 (1/O)		
		1	1	Tout pin (output) / port G_{1} (input)		
V12	Prescaler/timer 1 operation start bit	0	0	Prescaler stop (initial state) / timer 1 stop (state retained)		
		1	1	Prescaler/timer 1 operation		
V11	Timer 1 interrupt enable bit	0	0	Interrupt disabled (SNZ1 instruction is valid)		
		1	1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External interrupt enable bit	0	0	Interrupt disabled (SNZO instruction is valid)		
		1	1	Interrupt enabled (SNZO instruction is invalid)		
Key-on wakeup control register K0		at reset : 00002			at RAM back-up : state retained	R/W
K03	Prescaler dividing ratio selection bit	0		Instruction clock divided by 4		
		1		Instruction clock divided by 512		
K02	Interrupt valid waveform for INT pin/ key-on wakeup valid waveform selection bit (Note 2)	0	0 1	Rising waveform ("L" \rightarrow "H")		
K01	Ports G1-G3 key-on wakeup control bit	0	0	Key-on wakeup not used		
		1	1	Key-on wake	d ("L" level recognized)	
K00	Ports So-S3 key-on wakeup control bit	0	0	Key-on wakeup not used		
		1	1	Key-on wake	("L" level recognized)	
Pull-up control register PU0		at reset: 002			at RAM back-up : state retained	W
PU01	Ports C and K pull-up transistor control bit	0 Pull-up transistor OFF				
		1 Pull-up transistor ON				
PU00	Ports G0-G3 pull-up transistor control bit	0		Pull-up transistor OFF		
		-1		Pull-up transistor ON		
Logic operation selection register LO		at reset: 002			at RAM back-up : 002	W
LO1	Logic operation function selection bits	LO1	LOo	Functions		
		0	0	XOR operatio		
		0	1	OR operation		
LOo		1	0	AND operation		
		1	1	Not available		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: Set a value to the bit 2 of register K0, and execute the SNZO instruction to clear the EXFO flag to " 0 " after executing at least one instruction. According to the input state of Go/INT pin, the external interrupt request flag (EXFO) may be set to " 1 " when the interrupt valid waveform is changed.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 7.0	V
VI	Input voltage Xıı, G0-G3, D2/C, $\mathrm{D}_{3} / \mathrm{K}$		-0.3 to Vdd+0.3	V
V_{1}	Input voltage F0, F1, So-S3, D0, D1, $\overline{\text { RESET }}$		-0.3 to 8.0	V
Vo	Output voltage Xout		-0.3 to VdD+0.3	V
Vo	Output voltage Fo, F1, S0-S3, D0, D1	Output transistors	-0.3 to 8.0	V
Vo	Output voltage Go-G3, D2/C, D3/K	in cut-off state	-0.3 to Vdd+0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300	mW
Topr	Operating temperature range		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature range		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2.2 \mathrm{~V}$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Unit
			Min.	Typ.	Max.	
VDD	Supply voltage	$0.4 \mathrm{MHz} \leq \mathrm{f}($ XIN $) \leq 4.4 \mathrm{MHz}$	4.5	5.0	5.5	V
		$0.4 \mathrm{MHz} \leq \mathrm{f}(\mathrm{XIN}) \leq 1.1 \mathrm{MHz}$	2.2		5.5	V
Vram	RAM back-up voltage (at RAM back-up mode)		2.0		5.5	V
Vss	Supply voltage			0		V
VIH	"H" level input voltage F0, F1, D0, D1		0.7 VDD		7	V
$\mathrm{V}_{\mathbf{H}}$	"H" level input voltage G0-G3, D2, D3		0.7 VDD		VDD	V
VIH	"H" level input voltage INT		0.85VdD		VDD	V
VIH	"H" level input voltage C, K	$\mathrm{VDD}=4.5 \mathrm{~V}$ to 5.5 V	0.5 VDD		VDD	V
		$\mathrm{V} D \mathrm{D}=2.2 \mathrm{~V}$ to 5.5 V	0.7 VDD		VDD	V
V_{1+}	"H" level input voltage So-S3	$\mathrm{V} D \mathrm{D}=4.5 \mathrm{~V}$ to 5.5 V	0.4 VDD		7	V
		$\mathrm{V} D \mathrm{D}=2.2 \mathrm{~V}$ to 5.5 V	0.6 VDD		7	V
VIH	" H " level input voltage RESET		0.85Vdd		7	V
VIL	"L" level input voltage C, K		0		0.16Vdd	V
VIL	"L" level input voltage So-S3		0		0.2Vdd	V
VIL	"L" level input voltage Fo, F1, Go-G3, D0-D3		0		0.3 VDD	V
VIL	"L" level input voltage INT		0		0.15Vdd	V
VIL	"L" level input voltage RESET		0		0.1 VDD	V
loL(peak)	"L" level peak output current $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}, D_{2} / C, D_{3} / K$				24	mA
loL(peak)	"L" level peak output current $\mathrm{G}_{0}, \mathrm{G}_{1} /$ Tout, G_{2}, G3				10	mA
loL(avg)	"L" level average output current $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}, D_{2} / C, D_{3} / K$	(Note 1)			12	mA
IoL(avg)	"L" level average output current G0, G1/Tout, G2, G3	(Note 1)			5	mA
f(Xin)	System clock frequency (Note 2)	$\mathrm{V} D \mathrm{D}=4.5 \mathrm{~V}$ to 5.5 V	0.4	4.0	4.4	MHz
		$\mathrm{V} D \mathrm{D}=2.2 \mathrm{~V}$ to 5.5 V	0.4	1.0	1.1	
$\Delta \mathrm{f}$ (XIN)	Frequency error (errors of external capacitor and resistor not included) Note: Use the 30 pF capacitor externally and enable the change of frequency by external resistor.	$\begin{aligned} & \text { VDD }=5 \mathrm{~V} \pm 10 \% \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \text { [reference] } \\ & \left(-20^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$			± 17	\%
		$\begin{aligned} & \text { VDD }=3 \mathrm{~V} \pm 10 \% \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \text { [reference] } \\ & \left(-20^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$			± 17	

Notes 1: Keep the total currents of loL(avg) for ports $\mathrm{S}_{0}-\mathrm{S}_{3}, \mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$ to 50 mA or less.
Keep the total currents of lol(avg) for ports Fo, F1, Go, G2, G3 and $\mathrm{G}_{1} /$ Tоut pin to 30 mA or less.
2: The system clock frequency is affected by the external capacitor, resistor and LSI. Accordingly, set the constants so as not to exceed the frequency limits.
Be careful about the input waveform when using the external clock. Refer to the notes on use.

ELECTRICAL CHARACTERISTICS

($\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{VDD}=2.2 \mathrm{~V}$ to 5.5 V , unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
Vol	"L" level output voltage $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}, D_{2} / C, D_{3} / K$	$\mathrm{V} D=5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$			2	V
		VDD $=3 \mathrm{~V}$	$\mathrm{loL}=6 \mathrm{~mA}$			0.9	V
Vol	"L" level output voltage G0, G1/Tout, G2, G3	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	$\mathrm{loL}=5 \mathrm{~mA}$			2	V
		$\mathrm{V} D=3 \mathrm{~V}$	$\mathrm{loL}=2 \mathrm{~mA}$			0.9	V
IIH	"H" level input current $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}, \overline{R E S E T}$	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$				1	$\mu \mathrm{A}$
${ }^{\text {IH }}$	"H" level input current $\mathrm{G}_{0} / \mathrm{INT}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{VDD}$				1	$\mu \mathrm{A}$
IIL	"L" level input current $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}, D_{2} / C, D_{3} / K$, Go/INT, G1, G2, G3, RESET	V I $=0 \mathrm{~V}$ (Note)				-1	$\mu \mathrm{A}$
IozH	Output current at off-state $F_{0}, F_{1}, S_{0}-S_{3}, D_{0}, D_{1}$	$\mathrm{Vo}=7 \mathrm{~V}$				1	$\mu \mathrm{A}$
IozH	Output current at off-state $\mathrm{G}_{1}, \mathrm{G}_{1} /$ Tout, $\mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$	$\mathrm{V} O=\mathrm{V} D \mathrm{D}$				1	$\mu \mathrm{A}$
IDD	at active mode	$\mathrm{V} \mathrm{DD}=5 \mathrm{~V}$	$\mathrm{f}(\mathrm{XIN})=4.0 \mathrm{MHz}$		1.5	5	mA
		VDD $=3 \mathrm{~V}$	$\mathrm{f}(\mathrm{XIN})=1.0 \mathrm{MHz}$		0.3	1	mA
	at RAM back-up mode	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-		0.1	1	$\mu \mathrm{A}$
		VDD $=5 \mathrm{~V}$	-			10	$\mu \mathrm{A}$
		$\mathrm{V} D \mathrm{D}=3 \mathrm{~V}$				6	$\mu \mathrm{A}$
Rpu	Pull-up transistor Go/INT, G1, G2, G3, D2/C, D3/K	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$		5	11	25	$\mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\text {T- }}}$	Hysteresis INT	\bigcirc			0.3		V
$\mathrm{V}_{\mathrm{T}_{+}-\mathrm{V}_{\text {T- }}}$	Hysteresis So-S3	$\mathrm{VDD}=5 \mathrm{~V}$		0.1			V
$\mathrm{V}_{\mathrm{T}+}-\mathrm{V}_{\mathrm{T}-}$	Hysteresis RESET	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$			1.8		V
		$\mathrm{V} D=3 \mathrm{~V}$			0.7		V

Note: In this case, the pull-up transistors for $\mathrm{G}_{0} / \mathrm{INT}$ pin and ports $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$, $\mathrm{D}_{2} / \mathrm{C}$ and $\mathrm{D}_{3} / \mathrm{K}$ are not selected.

BASIC TIMING DIAGRAM

		Mi	$\mathrm{Mi}+1$			
		T4	T_{1}	T2	T3	T4
Clock	XIN Do, D1 $\mathrm{D}_{2} / \mathrm{C}, \mathrm{D}_{3} / \mathrm{K}$ Do, D1 D2/C, D3/K $\mathrm{F}_{0}, \mathrm{~F}_{1}$ Go/INT, $\mathrm{G}_{1} /$ Tout G 2 , G_{3} $\mathrm{S}_{0}-\mathrm{S}_{3}$					
Ports D, C, K output						
Ports D, C, K input						
Ports F, G, S output						
Ports F, G, S input	$\mathrm{F}_{0}, \mathrm{~F}_{1}$ Go/INT, $\mathrm{G}_{1} /$ Tout G 2 , G_{3} $\mathrm{S}_{0}-\mathrm{S}_{3}$					
Interrupt input	Go/INT					

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4250 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.
The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 15 shows the product of built-in PROM version. Figure 31 and 32 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 15 Product of built-in PROM version

Product	PROM size $(\times 9$ bits $)$	RAM size $(\times 4$ bits $)$	Package	ROM type
M34250E2-XXXFP *	2048 words	64 words	20P2N-A	One Time PROM [shipped after writing] (shipped after writing and test in factory)
		One Time PROM [shipped in blank]		
M34250E2FP*				

*: Under development

PIN CONFIGURATION (TOP VIEW)

Outline 20P2N-A

Fig. 31 Pin configuration of built-in PROM version

PIN CONFIGURATION (TOP VIEW)

* : A resistor is connected to XIN pin.

A capacitor is connected to Xout pin.
Note: The state of each disconnected pin is the same as that at reset.

Fig. 32 Pin configuration of built-in PROM version (continued)

(1) PROM mode

The 4250 Group has a function to serially input/output the command codes, addresses, and data required for operation (e.g. read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), Sclk (serial clock input), and PGM to "H" after connecting wires as shown in Figure 32 and powering on the Vdd pin, and then applying 12 V to the VPP pin.
In the PROM mode, three types of software commands (read, program, and program verify) can be used.
Clock-synchronous serial I/O is used, beginning from the LSB (LSB first). Use the special-purpose serial programmer when performing serial read/program.
Refer to the Mitsubishi Data Book "DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS" about the serial programmer (serial programmer and control software, etc.) for the Mitsubishi single-chip microcomputers.
(2) Notes on handling
(1) A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
(2) For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 33 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped)

Fig. 33 Flow of writing and test of the product shipped in blank

RenesasTechnology Corp.
 Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

- Keep safety first in your circuit designs

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi sem
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems fo transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
or reproduce in whole or in part these materials.
 approved destination.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Rev. No.	Revision Description	Rev. date	
1.0	First Edition		

[^0]: Note: "W" represents write enabled.

