M52749FP

BUS Controlled 3ch Video Pre-amp for CRT Display Monitor

Description

M52749FP is semiconductor integrated circuit for CRT display monitor.
It includes OSD blanking, OSD mixing, retrace blanking, wide band amplifier, brightness control, main/sub contrast and OSD adjust function.

Features

- Frequency Band Width: RGB	$180 \mathrm{MHz}\left(3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right.$ at $\left.-3 \mathrm{~dB}\right)$
	OSD
Input:	80 MHz
RGB	$0.7 \mathrm{~V}_{\text {P-P }}$ (typ.)
OSD	$3 \mathrm{~V}_{\text {P-P }} \min$. (positive)
BLK (for OSD)	$3 \mathrm{~V}_{\text {P-P }} \min$. (positive)
Retrace BLK	$3 \mathrm{~V}_{\text {P-P }} \min$. (positive)
Output: RGB	$5.5 \mathrm{~V}_{\text {P-P }}$ (max.)
OSD	$3.5 \mathrm{~V}_{\text {P-P }}$ (max.)

- Main contrast, sub contrast, OSD adjust and 5ch D/A OUT can be controlled by $\mathrm{I}^{2} \mathrm{C}$ BUS.

Application

CRT display monitor

Recommended Operating Conditions

Supply voltage range:
11.5 V to $12.5 \mathrm{~V}(\mathrm{~V} 3, \mathrm{~V} 8, \mathrm{~V} 12, \mathrm{~V} 42)$
4.5 V to $5.5 \mathrm{~V}(\mathrm{~V} 19)$

Rated supply voltage: 12.0 V (V3, V8, V12, V42)
5.0 V (V19)

Major Specification

BUS controlled 3ch video pre-amp with OSD mixing function and retrace blanking function

Block Diagram

Pin Arrangement

(Top view)

Outline: PRSP0042GB-A (42P9R-A)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage (Pin 3, 8, 12, 42)	$\left.\mathrm{V}_{\mathrm{Cc} 12}{ }^{\circ} \mathrm{C}\right)$		
Supply voltage (Pin 19)	$\mathrm{V}_{\mathrm{Cc}} 5$	13.0	V
Power dissipation	Pd	6.0	V
Ambient temperature	Topr	2900	mW
Storage temperature	Tstg	-20 to +75	${ }^{\circ} \mathrm{C}$
Recommended supply12	Vopr12	-40 to +150	${ }^{\circ} \mathrm{C}$
Recommended supply5	Vopr5	12.0	V
Voltage range12	Vopr'12	5.0	V
Voltage range5	Vopr'5	11.5 to 12.5 (Typ 12.0$)$	V

BUS Control Table

(1) Slave address:

D7	D6	D5	D4	D3	D2	D1	R/W	
1	0	0	0	1	0	0	0	$=88 \mathrm{H}$

(2) Each function's sub address:

	Function	Bit	Sub Add.	Data Byte (Up: Bit, Information Down: Preset)							
No.				D7	D6	D5	D4	D3	D2	D1	D0
1	Main contrast	8	00H	A07	A06	A05	A04	A03	A02	A01	A00
				0	1	0	0	0	0	0	0
2	Sub contrast R	8	01H	A17	A16	A15	A14	A13	A12	A11	A10
				1	0	0	0	0	0	0	0
3	Sub contrast G	8	02H	A27	A26	A25	A24	A23	A22	A21	A20
				1	0	0	0	0	0	0	0
4	Sub contrast B	8	03H	A37	A36	A35	A34	A33	A32	A31	A30
				1	0	0	0	0	0	0	0
5	OSD level	4	04H	-	-	-	-	A43	A42	A41	A40
				0	0	0	0	1	0	0	0
6	D/A OUT1	8	06H	A67	A66	A65	A64	A63	A62	A61	A60
				1	0	0	0	0	0	0	0
7	D/A OUT2	8	07H	A77	A76	A75	A74	A73	A72	A71	A70
				1	0	0	0	0	0	0	0
8	D/A OUT3	8	08H	A87	A86	A85	A84	A83	A82	A81	A80
				1	0	0	0	0	0	0	0
9	D/A OUT4	8	09H	A97	A96	A95	A94	A93	A92	A91	A90
				1	0	0	0	0	0	0	0
10	D/A OUT5	8	0AH	AA7	AA6	AA5	AA4	AA3	AA2	AA1	AA0
				1	0	0	0	0	0	0	0

$I^{2} C$ BUS Control Section SDA, SCL Characteristics

Item	Symbol	Min.	Max.	Unit
Min. input LOW voltage	V_{IL}	-0.5	1.5	V
Max. input HIGH voltage	V_{IH}	3.0	5.5	V
SCL clock frequency	$\mathrm{f}_{\mathrm{SCL}}$	0	400	kHz
Time the bus must be free before a new transmission can start	$\mathrm{t}_{\mathrm{BUF}}$	1.3	-	$\mu \mathrm{s}$
Hold time start condition. After this period the first clock pulse is generated	$\mathrm{t}_{\mathrm{HD}: \mathrm{STA}}$	0.6	-	$\mu \mathrm{s}$
The LOW period of the clock	$\mathrm{t}_{\text {LOW }}$	1.3	-	$\mu \mathrm{s}$
The HIGH period of the clock	$\mathrm{t}_{\text {HIGH }}$	0.6	-	$\mu \mathrm{s}$
Set up time for start condition (Only relevant for a repeated start condition)	$\mathrm{t}_{\text {su:STA }}$	0.6	-	$\mu \mathrm{s}$
Hold time DATA	$\mathrm{t}_{\text {HD:DAT }}$	0.1	-	$\mu \mathrm{s}$
Set-up time DATA	$\mathrm{t}_{\text {SU:DAT }}$	100	-	ns
Rise time of both SDA and SCL lines	tr	-	300	ns
Fall time of both SDA and SCL lines	tf	-	300	ns
Set-up time for stop condition	$\mathrm{t}_{\text {SU:STO }}$	0.6	-	$\mu \mathrm{s}$

Timing Chart

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, 5 \mathrm{~V} ; \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified $)$

		Limits				Test Point (s)	Input						CTLVoltage		BUS CTL (H)									
Item	Symbol	Min.	Typ.	Max.	Unit		$\begin{array}{\|c\|} \hline 2,6, \\ 11 \\ \text { RGB } \\ \hline \end{array}$	$\begin{gathered} 1 \\ \hline \begin{array}{c} 1 \\ \text { OSD } \\ \text { BLK } \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4,9, \\ 13 \\ \text { OsD } \\ \text { in } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ C P \text { in } \end{array}$	$\begin{array}{\|c\|} \hline 30 \\ \text { ReT } \\ \text { BLK } \end{array}$	$\begin{gathered} \hline 7 \\ \hline \mathrm{SOGG}_{\mathrm{in}} \\ \hline \end{gathered}$	$\begin{aligned} & 34 \\ & \text { Bri- } \\ & \text { ght } \end{aligned}$	$\left\|\begin{array}{c\|} 17 \\ \text { ABL } \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { 00H } \\ \text { Main } \\ \text { Cont } \end{array}$	$\begin{array}{\|c\|} \hline 01 \mathrm{H} \\ \text { Sub } \\ \text { Cont } \\ 1 \\ \hline \end{array}$	$\begin{gathered} \hline 02 \mathrm{H} \\ \text { Sub } \\ \text { Cont } \\ 2 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 03 H \\ \text { Sub } \\ \text { Cont } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 04 \mathrm{H} \\ \text { OSD } \\ \text { Adj } \end{array}$	$\begin{array}{\|c\|} \hline 06 \mathrm{H} \\ \mathrm{DA} \\ \text { OUT } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { O7H } \\ \text { DA } \\ \text { OUT } \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 08 \mathrm{H} \\ \mathrm{DA} \\ \text { OUT } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { O9H } \\ \text { D/A } \\ \text { OUT } \\ 4 \\ \hline \end{array}$	OAH D/A OUT 5
Circuit current1	$\mathrm{I}_{\mathrm{CC} 1}$	-	110	130	mA	I_{A}	a	a	a	$\begin{array}{\|c} \hline b \\ \text { SG5 } \end{array}$	a	a	4.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \text { FFH } \\ & \hline 255 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FFH } \\ & 255 \end{aligned}$	OOH	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	FFH 255
Circuit current2	$\mathrm{I}_{\mathrm{CC} 2}$	-	18	22	mA	I_{B}	a	a	a	$\begin{array}{\|c} \hline b \\ \text { SG5 } \end{array}$	a	a	4.0	5.0										
Output dynamic range	Vomax	6.0	8.0	-	$\mathrm{V}_{\text {P-P }}$	OUT	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG2 } \\ \hline \end{array}$	a	a	$\begin{gathered} \hline \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	$\begin{array}{\|l\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	\dagger									
Maximum input	Vimax	1.6	-	-	$\mathrm{V}_{\text {P-P }}$	$\begin{array}{\|c\|} \hline \mathrm{IN} \\ \mathrm{OUT} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \hline \mathrm{SG2} \\ \text { Varable } \end{array}$	a	a	$\begin{array}{\|c\|} \hline b \\ \text { SG5 } \\ \hline \end{array}$	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline 64 \mathrm{H} \\ 100 \\ \hline \end{array}$									
Maximum gain	G_{V}	16.5	17.7	19.4	dB	OUT	$\begin{array}{\|c\|} \hline b \\ \text { sG1 } \\ \hline \end{array}$	a	a	$\begin{array}{c\|} \hline \mathrm{b} \\ \text { SG5 } \end{array}$	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$									
Relative maximum gain	$\Delta \mathrm{G}_{\mathrm{V}}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-									
Main contrast control characteristics1	$\mathrm{V}_{\mathrm{C} 1}$	15.5	17.0	18.5	dB	OUT	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 1 \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline b \\ \text { SG5 } \end{array}$	a	a	2.0	5.0	$\begin{array}{\|l\|} \hline \mathrm{C} 8 \mathrm{H} \\ 200 \\ \hline \end{array}$									
Main contrast control relative characteristics1	$\Delta \mathrm{V}_{\mathrm{C} 1}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-									
Main contrast control characteristics2	$\mathrm{V}_{\mathrm{C} 2}$	9.0	10.5	12.0	dB	OUT	$\begin{array}{c\|c} \mathrm{b} \\ \mathrm{SG} 1 \end{array}$	a	a	$\begin{array}{\|c} \hline b \\ \text { SG5 } \end{array}$	a	a	2.0	5.0	$\begin{array}{\|l\|} \hline 64 \mathrm{H} \\ 100 \end{array}$									
Main contrast control relative characteristics2	$\Delta \mathrm{V}_{\mathrm{C} 2}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-		\bigcirc							
Main contrast control characteristics3	$\mathrm{V}_{\mathrm{C} 3}$	0.2	0.4	0.6	$\mathrm{V}_{\text {P-P }}$	OUT	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 1 \end{gathered}$	a	a	$\begin{array}{c\|} \hline b \\ \text { SG5 } \end{array}$	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline 14 \mathrm{H} \\ 20 \\ \hline \end{array}$,								
Main contrast control relative characteristics3	$\Delta \mathrm{V}_{\mathrm{C} 3}$	0.8	1.0	1.2	-	-	-			-	-		-	-	-	\downarrow	\dagger							
Sub contrast control characteristics1	$\mathrm{V}_{\text {SC1 }}$	15.5	17.0	18.5	dB	OUT	SG1	a	a	¢ ${ }_{\text {b }}$	a	a	2.0	5.0	$\begin{aligned} & \hline \text { FFH } \\ & 255 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { C8H } \\ 200 \end{array}$	$\begin{gathered} \hline \text { C8H } \\ 200 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { C8H } \\ 200 \end{array}$						
Sub contrast control relative characteristics1	$\Delta \mathrm{V}_{\text {SC1 }}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
Sub contrast control characteristics2	$\mathrm{V}_{\text {SC2 }}$	10.5	12.0	13.5	dB	OUT	$\begin{gathered} \hline b \\ \text { SG1 } \end{gathered}$	a	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG5} \end{gathered}$	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 64 \mathrm{H} \\ 100 \end{array}$	$\begin{aligned} & \hline 64 \mathrm{H} \\ & 100 \end{aligned}$	$\begin{array}{\|l\|} \hline 64 \mathrm{H} \\ 100 \\ \hline \end{array}$						
Sub contrast control relative characteristics2	$\Delta \mathrm{V}_{\text {SC2 }}$	0.8	1.0	1.2	-		-	-	-	-	-	-	-	-	-	-	-	-						
Sub contrast control characteristics3	$\mathrm{V}_{\text {SC3 }}$	0.7	1.2	1.5	$\mathrm{V}_{\text {P-P }}$		$\begin{array}{c\|c} \mathrm{b} \\ \mathrm{SG} 1 \end{array}$	a	a	$\begin{array}{\|c\|c} \hline b \\ \text { SG5 } \end{array}$	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 14 \mathrm{H} \\ 20 \end{array}$	$\begin{gathered} \hline 14 \mathrm{H} \\ 20 \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \mathrm{H} \\ 20 \\ \hline \end{array}$						
Sub contrast control relative characteristics3	$\Delta \mathrm{V}_{\text {SC3 }}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
Main/sub contrast control characteristics	VMSC	3.4	4.0	4.6	$\mathrm{V}_{\text {P-P }}$	OUT	$\begin{array}{c\|c} \hline b \\ \text { SG1 } \end{array}$	a	a	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG5 } \\ \hline \end{array}$	a	a	2.0	5.0	$\begin{aligned} & \hline \mathrm{C} 8 \mathrm{H} \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{CBH} \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C8H} \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{CBH} \\ & 200 \end{aligned}$						
Main/sub contrast control relative characteristics	$\triangle \mathrm{VMSC}$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
ABL control characteristics1	ABL1	4.6	5.4	6.2	$\mathrm{V}_{\text {P-P }}$	OUT	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{SG} 1 \\ \hline \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG5 } \\ \hline \end{array}$	a	a	2.0	4.0	$\begin{array}{\|l\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \hline \begin{array}{l} \text { FFH } \\ 25 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { FFH } \\ 255 \\ \hline \end{array}$						
ABL control relative characteristics1	$\triangle \mathrm{ABL} 1$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-										
ABL control characteristics2	ABL2	2.3	2.8	3.3	$\mathrm{V}_{\text {P-P }}$	OUT	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \mathrm{sG} 1 \\ \hline \end{array}$	a	a	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG5 } \\ \hline \end{array}$	a	a	2.0	2.0										
ABL control relative characteristics2	4ABL2	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-	\dagger	\downarrow								

		Limits				Test Point (s)	Input						CTL Voltage		BUS CTL (H)									
Item	Symbol	Min.	Typ.	Max.	Unit		$\begin{gathered} 2,6, \\ 11 \\ \text { RGB } \\ \text { in } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \\ \text { OSD } \\ \text { BLK } \end{array}$	$\begin{array}{\|c\|} \hline 4,9 \\ 13 \\ \text { osD } \\ \text { in } \\ \hline \end{array}$	$\begin{aligned} & \hline 21 \\ & \mathrm{CP} \text { in } \end{aligned}$	$\begin{gathered} 30 \\ \text { ReT } \\ \text { BLK } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} 7 \\ \text { Sog } \\ \text { in } \end{array} \end{array}$	$\begin{array}{\|l\|} \hline 34 \\ \text { Bri- } \\ \text { ght } \end{array}$	$\begin{gathered} 17 \\ \text { ABL } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { OOH } \\ \text { Main } \\ \text { Cont } \end{array}$	$\begin{array}{\|c\|} \hline \left.\begin{array}{c} 014 \\ \text { Sub } \\ \text { Cont } \\ 1 \\ \hline \end{array} \right\rvert\, \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 02 \mathrm{H} \\ \text { Sub } \\ \text { Cont } \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} 03 \mathrm{H} \\ \text { Sub } \\ \text { Contt } \\ 3 \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { O4H } \\ \text { OSD } \\ \text { Adj } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 06 \mathrm{H} \\ \mathrm{DA} \\ \text { OUT } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { OTH } \\ \text { D/A } \\ \text { OUT } \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 08 \mathrm{H} \\ \mathrm{D} / \mathrm{A} \\ \text { OUT } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 09 H \\ \text { DA } \\ \text { OUT } \\ 4 \\ \hline \end{array}$	OAH DA OUT O
Brightness control characteristics1	$\mathrm{V}_{\mathrm{B} 1}$	3.6	4.0	4.4	V	OUT	a	a	a	$\begin{gathered} \hline \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	4.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{gathered} \hline \text { FFH } \\ 255 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	FFH
Brightness control relative characteristics1	$\Delta \mathrm{V}_{\mathrm{B} 1}$	-0.3	0	0.3	V	-	-	-	-	-	-	-	-	-										
Brightness control characteristics2	$V_{B 2}$	1.8	2.1	2.4	V	OUT	a	a	a	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	2.0	5.0										
Brightness control relative characteristics2	$\Delta \mathrm{V}_{\mathrm{B} 2}$	-0.3	0	0.3	V	-	-	-	-	-	-	-	-	-										
Brightness control characteristics3	$V_{B 3}$	0.9	1.1	1.3	V	OUT	a	a	a	$\begin{gathered} \hline \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	1.0	5.0										
Brightness control relative characteristics3	$\Delta \mathrm{V}_{\mathrm{B} 3}$	-0.3	0	0.3	V	-	-	-	-	-	-	-	-	-	\dagger									
Frequency characteristics1 ($\mathrm{f}=50 \mathrm{MHz}$)	$\mathrm{F}_{\mathrm{C} 1}$	-2.0	0	2.5	dB	OUT	$\begin{gathered} \text { b } \\ \text { sG3 } \end{gathered}$	a	a	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$									
Frequency relative characteristics1 $(f=50 \mathrm{MHz})$	$\Delta \mathrm{F}_{\mathrm{C} 1}$	-1.0	0	1.0	dB	-	-	-	-	-	-	-	-		$-$									
Frequency characteristics1 ($\mathrm{f}=180 \mathrm{MHz}$)	$\mathrm{F}_{\mathrm{C} 1}{ }^{\prime}$	-3.0	0	3.0	dB	OUT	$\begin{gathered} \hline b \\ \text { sG3 } \end{gathered}$	a	a	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	$\begin{array}{\|l\|} \hline \text { Vari } \\ \text { able } \end{array}$									
Frequency relative characteristics1 $(\mathrm{f}=180 \mathrm{MHz})$	$\Delta \mathrm{F}_{\mathrm{C1}}{ }^{\prime}$	-1.0	0	1.0	dB	-	-	-	-	-	-	-	-	-										
Frequency characteristics2 ($\mathrm{f}=180 \mathrm{MHz}$)	$\mathrm{F}_{\mathrm{C} 2}$	-3.0	3.0	5.0	dB	OUT	$\begin{gathered} \mathrm{b} \\ \text { SG3 } \end{gathered}$	a	a	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0										
Frequency relative characteristics2 $(\mathrm{f}=180 \mathrm{MHz})$	$\Delta \mathrm{F}_{\mathrm{C} 2}$	-1.0	0	1.0	dB	-	-	-	-	-	-		-	-	1									
$\begin{array}{\|l\|} \hline \text { Crosstalk1 } \\ (\mathrm{f}=50 \mathrm{MHz}) \\ \hline \end{array}$	C.T. 1	-	-25	-20	dB	$\begin{array}{\|l\|} \hline \text { OUT (33) } \\ \text { OUT (38) } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2b SG3 } \\ 6 \mathrm{a} \\ 11 \mathrm{a} \\ \hline \end{array}$	a	a	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$									
$\begin{array}{\|l\|} \hline \text { Crosstalk1 } \\ (\mathrm{f}=180 \mathrm{MHz}) \\ \hline \end{array}$	C.T.1'	-	-20	-15	dB	$\begin{array}{\|l\|} \hline \text { OUT (33) } \\ \text { OUT (38) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 2b SG3 } \\ 6 \mathrm{aa} \\ \hline 1 \mathrm{a} \\ \hline \end{array}$	a	a	$\begin{gathered} a \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0										
$\begin{array}{\|l\|} \hline \text { Crosstalk2 } \\ (\mathrm{f}=50 \mathrm{MHz}) \\ \hline \end{array}$	C.T. 2	-	-25	-20	dB	$\begin{aligned} & \hline \text { OUT (33) } \\ & \text { OUT (41) } \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \mathrm{a} \\ \text { 6b SG3 } \\ 11 \mathrm{a} \\ \hline \end{array}$	a	a	$\begin{array}{\|c} \hline a \\ 5 \mathrm{~V} \\ \hline \end{array}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \\ \hline \end{array}$	5.0										
$\begin{array}{\|l\|} \hline \text { Crosstalk2 } \\ (\mathrm{f}=180 \mathrm{MHz}) \\ \hline \end{array}$	C.T.2'	-	-20	-15	dB	$\begin{array}{\|l\|} \hline \text { OUT (33) } \\ \text { OUT (41) } \end{array}$	$\begin{array}{\|l\|} \hline 2 \mathrm{a} \\ \text { 6b SG3 } \\ 11 \mathrm{a} \\ \hline \end{array}$	a	a	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \\ \hline \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \\ \hline \end{array}$	5.0										
$\begin{array}{\|l} \hline \text { Crosstalk3 } \\ (\mathrm{f}=50 \mathrm{MHz}) \\ \hline \end{array}$	C.T. 3	-	-25	-20	dB	$\begin{aligned} & \hline \text { OUT (38) } \\ & \text { OUT (41) } \end{aligned}$	$\begin{array}{\|l\|} \hline 2 a \\ 6 a \\ \text { 6ab SG3 } \\ \hline \end{array}$	a	a	$\begin{gathered} \mathrm{a} \\ 5 \mathrm{~V} \end{gathered}$	a	a	$\begin{array}{\|c} \hline \text { Vari } \\ \text { able } \\ \hline \end{array}$	5.0										
$\begin{array}{\|l\|} \hline \text { Crosstalk3 } \\ (\mathrm{f}=180 \mathrm{MHz}) \\ \hline \end{array}$	C.T.3'	-	-20	-15	dB	$\begin{array}{\|l} \hline \text { OUT (38) } \\ \text { OUT (41) } \end{array}$	$\begin{array}{\|l\|} \hline 2 a \\ \text { 6a } \\ 11 \mathrm{bS} 3 \\ \hline \end{array}$	a	a	$\begin{gathered} a{ }^{2} \mathrm{a} \end{gathered}$	a	a	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	1									
Pulse characteristics1 $\left(3 V_{P-P}\right)$	Tr	-	2.0	2.8	ns	OUT	$\begin{gathered} \mathrm{b} \\ \mathrm{sG} 1 \end{gathered}$	a	a	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	$\begin{array}{\|c} \hline \begin{array}{c} \text { Vari } \\ \text { able } \end{array} \\ \hline \end{array}$	5.0	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$									
Pulse characteristics2 $\left(3 V_{P-P}\right)$	Tf	-	2.0	2.8	ns	OUT	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{sG} 1 \end{gathered}$	a	a	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	$\begin{array}{\|c\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	5.0	$\begin{array}{\|c\|} \hline \\ \hline \\ \text { Vari } \\ \text { able } \end{array}$									
Clamp pulse threshold voltage	VthCP	1.0	1.5	2.0	V	OUT	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 1 \end{gathered}$	a	a	$\underset{\substack{\mathrm{b} \\ \text { Sarable }}}{ }$	a	a	2.0	5.0	$\begin{array}{c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$									
Clamp pulse minimum width	WCP	0.2	-	-	$\mu \mathrm{s}$	OUT	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{sG} 1 \end{gathered}$	a	a	$\begin{array}{c\|} \hline \mathrm{b} \\ \substack{\text { SGS } \\ \text { Varibube }} \end{array}$	a	a	2.0	5.0					\dagger					
OSD pulse characteristics1	OTr	-	3.0	6.0	ns	OUT	a	a	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{SG6} \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	2.0	5.0					08 H 8					
OSD pulse characteristics2	OTf	-	3.0	6.0	ns	OUT	a	a	$\begin{gathered} \hline \mathrm{b} \\ \text { SG6 } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \text { SG5 } \end{gathered}$	a	a	2.0	5.0	\downarrow	\dagger	\dagger	\dagger	08H 8	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

		Limits				Test Point (s)	Input						CTL Voltage		BUS CTL (H)									
Item	Symbol	Min.	Typ.	Max.	Unit		$\begin{gathered} 2,6, \\ 11 \\ \mathrm{RGB} \\ \text { in } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1 \\ \text { OSD } \\ \text { BLK } \end{array}$	$\begin{array}{\|c} \hline 4,9, \\ 13 \\ \text { OSD } \\ \text { in } \\ \hline \end{array}$	$\begin{gathered} 21 \\ \mathrm{CP} \text { in } \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { ReT } \\ \text { BLK } \end{gathered}$	$\begin{gathered} 7 \\ \text { SOG } \\ \text { in } \end{gathered}$	$\begin{aligned} & \hline 34 \\ & \text { Bri- } \\ & \text { ght } \end{aligned}$	$\begin{gathered} 17 \\ \text { ABL } \end{gathered}$	OOH Main Cont	01 H Sub Cont 1	$\begin{array}{\|c\|} \hline \begin{array}{c} 02 \mathrm{H} \\ \text { Sub } \\ \text { Cont } \\ 2 \\ \hline \end{array} \\ \hline \end{array}$	03 H Sub Cont 3	$\begin{array}{\|c\|} \hline 04 \mathrm{H} \\ \text { OSD } \\ \text { Adj } \end{array}$	$\begin{array}{\|c\|} \hline \text { O6H } \\ \text { D/A } \\ \text { OUT } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { O7H } \\ \text { D/A } \\ \text { OUT } \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 08 \mathrm{H} \\ \mathrm{D} / \mathrm{A} \\ \text { OUT } \\ 3 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O9H} \\ \mathrm{D} / \mathrm{A} \\ \text { OUT } \\ 4 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{OAH} \\ \mathrm{D} / \mathrm{A} \\ \text { OUT } \\ 5 \\ \hline \end{array}$
OSD adjust control characteristics1	Oaj1	2.8	3.5	4.2	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	OUT	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG6} \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	a	a	2.0	5.0	$\begin{array}{\|l\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{gathered} \hline \text { FFH } \\ 255 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \mathrm{FH} \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|l\|} \hline \text { FFH } \\ 255 \end{array}$
OSD adjust control relative characteristics1	$\Delta \mathrm{Oaj} 1$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-					-					
OSD adjust control characteristics2	Oaj2	2.25	2.8	3.35	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	OUT	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	a	a	2.0	5.0					[08H					
OSD adjust control relative characteristics2	$\Delta \mathrm{Oaj} 2$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-					-					
OSD adjust control characteristics3	Oaj3	1.2	1.5	1.8	$\mathrm{V}_{\mathrm{P}-\mathrm{P}}$	OUT	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG6} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG6} \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	a	a	2.0	5.0					$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$					
OSD adjust control relative characteristics3	$\Delta \mathrm{Oaj} 3$	0.8	1.0	1.2	-	-	-	-	-	-	-	-	-	-					-					
OSD input threshold voltage	VthOSD	2.2	2.7	3.2	V	OUT	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 6 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG6 } \\ \text { Variable } \end{array}$	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	a	a	2.0	5.0					$\begin{array}{\|c\|} \hline 08 \mathrm{H} \\ 8 \end{array}$					
OSD BLK input threshold voltage	VthBLK	2.2	2.7	3.2	V	OUT	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{SG} 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { b } \\ \text { SG6 } \\ \hline \text { Variable } \\ \hline \end{array}$	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	a	a	2.0	5.0					$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$					
Retrace BLK characteristics1	HBLK1	-	0.3	0.6	V	OUT	a	a	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG7 } \\ \hline \end{array}$	a	2.0	5.0	-									
Retrace BLK input threshold voltage	VthRET	1.0	1.5	2.0	V	OUT	a	a	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 5 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \text { SG7 } \\ \text { Variable } \end{array}$	a	2.0	5.0		\downarrow	\dagger	\dagger	1	\dagger	\dagger	\dagger	\dagger	1
SOG input maximum noise voltage	SS-NV	-	-	0.03	$\mathrm{V}_{\text {P-P }}$	SonG IN SyncOUT	a	a	a	a	a	$\begin{array}{\|c} \mathrm{b} \\ \mathrm{SG} 4 \\ \text { Variable } \end{array}$	2.0	5.0			-	-	-	-	-	-	-	-
SOG minimum input voltage	SS-SV	0.2	-	-	$\mathrm{V}_{\text {P-P }}$	SonG IN SyncOUT	a	a	a	a	a	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \mathrm{SG} 4 \\ \text { Variable } \end{array}$	2.0	5.0	-		-	-	-	-	-	-	-	-
Sync output high level	VSH	4.5	4.9	5.0	V	Sync OUT	a	a	a	a	a	$\begin{array}{\|c\|} \hline \mathrm{b} \\ \mathrm{SG} 4 \\ \hline \end{array}$	2.0	5.0	-	-	-	-	-	-	-	-	-	-
Sync output low level	VSL	0	0.3	0.6	V	Sync OUT	a	a	a	a	a	$\begin{array}{\|c\|} \hline b \\ \hline \text { sG4 } \\ \hline \end{array}$	2.0	5.0	-	-	-	-	-	-	-	-	-	-
Sync output delay time1	TDS-F	0	60	90	ns	$\begin{aligned} & \text { Sync } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	$\begin{gathered} \hline \mathrm{b} \\ \mathrm{SG} 4 \\ \hline \end{gathered}$	2.0	5.0	-	-	-	-	-	-	-	-	-	-
Sync output delay time2	TDS-R	0	60	90	ns	Sync OUT	a	a	a	a	a	$\begin{gathered} \mathrm{b} \\ \mathrm{SG} 4 \end{gathered}$	2.0	5.0	-	-	-	-	-	-	-	-	-	-
D/A H output voltage	VOH	4.5	5.0	5.5	V_{DC}	$\begin{aligned} & \text { D/A } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{gathered} \hline \text { FFH } \\ 255 \end{gathered}$	$\begin{gathered} \hline 00 \mathrm{H} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FFH } \\ & 255 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{gathered} \hline \text { FFH } \\ 255 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$
D/A L output voltage	VOL	0	0.5	1.0	$V_{D C}$	$\begin{aligned} & \text { D/A } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	a	2.0	5.0	\dagger	\dagger	\dagger	\dagger	\dagger	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$				
D/A OUT input current	IA-	0.18	-	-	mA	$\begin{aligned} & \text { D/A } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	a	2.0	5.0	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{gathered} \hline 0 \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} 00 \mathrm{H} \\ 0 \end{gathered}$	$\begin{gathered} \hline 00 \mathrm{H} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{gathered} \hline 00 \mathrm{H} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{gathered} \hline 00 \mathrm{H} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$
D/A OUT output current	IA+	-	-	1.0	mA	$\begin{aligned} & \text { D/A } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	a	2.0	5.0	\dagger	\downarrow								
D/A nonlinearity	DNL	-1.0	-	1.0	LSB	$\begin{aligned} & \text { D/A } \\ & \text { OUT } \end{aligned}$	a	a	a	a	a	a	2.0	5.0	$\begin{array}{\|l\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \end{array}$	$\begin{array}{\|c\|} \hline \text { FFH } \\ 255 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 00 \mathrm{H} \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	$\begin{aligned} & \hline \text { Vari } \\ & \text { able } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$	$\begin{array}{\|l\|} \hline \text { Vari } \\ \text { able } \end{array}$	$\begin{array}{\|c\|} \hline \text { Vari } \\ \text { able } \end{array}$

Electrical Characteristics Test Method

$I_{\text {cc1 }}$ Circuit Current1

Measuring conditions are as listed in supplementary Table.
Measured with a current meter at test point I_{A}.

$I_{\text {CC2 }}$ Circuit Current2

Measuring conditions are as listed in supplementary Table.
Measured with a current meter at test point I_{B}.

Vomax Output Dynamic Range

Decrease V34 gradually, and measure the voltage when the bottom of waveform output is distorted. The voltage is called VOL.

Next, increase V34 gradually, and measure the voltage when the top of waveform output is distorted. The voltage is called VOH.

Voltage Vomax is calculated by the equation below:
Vomax = VOH - VOL

Vimax Maximum Input

Increase the input signal (SG2) amplitude gradually, starting from $700 \mathrm{mV}_{\text {P-p. }}$. Measure the amplitude of the input signal when the output signal starts becoming distorted.

Gv Maximum Gain

Input SG1, and read the amplitude output at OUT $(33,38,41)$. The amplitude is called VOUT $(33,38,41)$.
Maximum gain G_{V} is calculated by the equation below:

$$
\mathrm{G}_{\mathrm{V}}=20 \log \frac{\mathrm{VOUT}}{0.7}(\mathrm{~dB})
$$

ΔG_{v} Relative Maximum Gain

Relative maximum gain $\Delta \mathrm{G}_{\mathrm{V}}$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{G}_{\mathrm{v}}= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41) / \operatorname{VOUT}(33)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{C} 1}$ Main Contrast Control Characteristics1

Measuring the amplitude output at OUT (33, 38, 41). The measured value is called VOUT $(33,38,41)$. Main contrast control characteristics $\mathrm{V}_{\mathrm{C} 1}$ is calculated by the equation below:

$$
\mathrm{V}_{\mathrm{C} 1}=20 \log \frac{\mathrm{VOUT}}{0.7}(\mathrm{~dB})
$$

$\Delta \mathbf{V}_{\mathbf{C 1}}$ Main Contrast Control Relative Characteristics1

Relative characteristics $\Delta \mathrm{V}_{\mathrm{C} 1}$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{C} 1}= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41) / \operatorname{VOUT}(33)
\end{aligned}
$$

$\mathrm{V}_{\mathrm{C} 2}$ Main Contrast Control Characteristics2

Measuring condition and procedure are the same as described in V_{Cl}.

$\Delta \mathbf{V}_{\mathrm{C} 2}$ Main Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta \mathrm{V}_{\mathrm{Cl}}$.

$V_{\mathrm{C} 3}$ Main Contrast Control Characteristics3

Measure the amplitude output at $\operatorname{OUT}(33,38,41)$. The measured value is called VOUT $(33,38,41)$.

$\Delta \mathbf{V}_{\mathrm{C} 3}$ Main Contrast Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta \mathrm{V}_{\mathrm{C} 1}$.

$\mathbf{V}_{\mathrm{sc} 1}$ Sub Contrast Control Characteristics1

Measure the amplitude output at $\operatorname{OUT}(33,38,41)$. The measured value is called VOUT $(33,38,41)$.
Sub contrast control characteristics $\mathrm{V}_{\mathrm{SC} 1}$ is calculated by the equation below:

$$
\mathrm{V}_{\mathrm{SC} 1}=20 \log \frac{\mathrm{VOUT}}{0.7}(\mathrm{~dB})
$$

$\Delta \mathbf{V}_{\mathrm{sc} 1}$ Sub Contrast Control Relative Characteristics1

Relative characteristics $\Delta \mathrm{V}_{\text {SCl }}$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{SC} 1}= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41) / \operatorname{VOUT}(33) .
\end{aligned}
$$

$\mathrm{V}_{\mathrm{sc} 2}$ Sub Contrast Control Characteristics2

Measuring condition and procedure are the same as described in $\mathrm{V}_{\mathrm{SC} 1}$.

$\Delta \mathbf{V}_{\mathrm{sc} 2}$ Sub Contrast Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta \mathrm{V}_{\text {SCl }}$.

$V_{\text {sc3 }}$ Sub Contrast Control Characteristics3

Measure the amplitude output at $\operatorname{OUT}(33,38,41)$. The measured value is called VOUT $(33,38,41)$.

$\Delta \mathbf{V}_{\text {sc3 }}$ Sub Contrast Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta \mathrm{V}_{\text {SC1 }}$.

VMSC Main/sub Contrast Control Characteristics

Measure the amplitude output at OUT (33, 38, 41). The measured value is called VMSC.

Δ VMSC Main/sub Contrast Control Relative Characteristics

Relative characteristics $\triangle \mathrm{VMSC}$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{VMSC}= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \text { VOUT (41) / VOUT (33). }
\end{aligned}
$$

ABL1 ABL Control Characteristics1

Measure the amplitude output at $\operatorname{OUT}(33,38,41)$. The measured value is called VOUT $(33,38,41)$, and is treated as ABL1.

$\triangle A B L 1$ ABL Control Relative Characteristics1

Relative characteristics $\triangle \mathrm{ABL} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{ABL} 1= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41) / \operatorname{VOUT}(33) .
\end{aligned}
$$

ABL2 ABL Control Characteristics2

Measuring condition and procedure are the same as described in ABL1.

$\Delta A B L 2$ ABL Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\triangle \mathrm{ABL} 1$.

$\mathrm{V}_{\mathrm{B} 1}$ Brightness Control Characteristics1

Measure the DC voltage at OUT $(33,38,41)$ with a voltmeter. The measured value is called VOUT $(33,38,41)$, and is treated as $V_{B 1}$.

$\Delta \mathrm{V}_{\mathrm{B} 1}$ Brightness Control Relative Characteristics1

Relative characteristics $\Delta V_{B 1}$ is calculated by the difference in the output between the channels.

$$
\begin{aligned}
\Delta \mathrm{V}_{\mathrm{B} 1}= & \operatorname{VOUT}(33)-\operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38)-\operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41)-\operatorname{VOUT}(33) .
\end{aligned}
$$

$\mathrm{V}_{\mathrm{B} 2}$ Brightness Control Characteristics2

Measuring condition and procedure are the same as described in $\mathrm{V}_{\mathrm{B} 1}$.

$\Delta \mathbf{V}_{\mathrm{B} 2}$ Brightness Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta \mathrm{V}_{\mathrm{B} 1}$.

$\mathrm{V}_{\mathrm{B} 3}$ Brightness Control Characteristics3

Measuring condition and procedure are the same as described in $\mathrm{V}_{\mathrm{B} 1}$.

$\Delta \mathbf{V}_{\mathrm{B} 3}$ Brightness Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta V_{B 1}$.

$\mathrm{F}_{\mathrm{C} 1}$ Frequency Characteristics1 ($\mathbf{f}=\mathbf{5 0} \mathbf{~ M H z)}$

First, SG3 to 1 MHz is as input signal. Input a resister that is about $2 \mathrm{k} \Omega$ to offer the voltage at input pins $(2,6,11)$ in order that the bottom of input signal is 2.5 V .

Control the main contrast in order that the amplitude of sine wave output is $4.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$.
Control the brightness in order that the bottom of sine wave output is $2.0 \mathrm{~V}_{\text {P-P. }}$
By the same way, measure the output amplitude when SG3 to 50 MHz is as input signal.
The measured value is called VOUT $(33,38,41)$. Frequency characteristics $\mathrm{F}_{\mathrm{C} 1}(33,38,41)$ is calculated by the equation below:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C} 1}=20 \log \frac{\text { VOUT } \mathrm{V}_{\mathrm{P}-\mathrm{P}}}{\text { Output amplitude when inputted SG3 }(1 \mathrm{MHz}): 4.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}} \tag{dB}
\end{equation*}
$$

$\Delta \mathrm{F}_{\mathrm{C} 1}$ Frequency Relative Characteristics1 (f = $\mathbf{5 0} \mathbf{~ M H z) ~}$

Relative characteristics $\Delta \mathrm{F}_{\mathrm{C} 1}$ is calculated by the difference in the output between the channels.

$F_{C 1}{ }^{\prime}$ Frequency Characteristics1 (f = 180 MHz)

Measuring condition and procedure are the same as described in $\mathrm{F}_{\mathrm{C} 1}$, expect SG 3 to 180 MHz .

$\Delta \mathrm{F}_{\mathrm{c}^{\prime}}$ Frequency Relative Characteristics1 ($\mathrm{f}=180 \mathrm{MHz}$)

Relative characteristics $\Delta \mathrm{F}_{\mathrm{C} 1}$ ' is calculated by the difference in the output between the channels.

$\mathrm{F}_{\mathrm{C} 2}$ Frequency Characteristics2 ($\mathbf{f}=\mathbf{1 8 0} \mathbf{~ M H z}$)

SG3 to 1 MHz is as input signal. Control the main contrast in order that the amplitude of sine wave output is $1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. By the same way, measure the output amplitude when SG3 to 150 MHz is as input signal.

The measured value is called VOUT (33, 38, 41).
Frequency characteristics $\mathrm{F}_{\mathrm{C} 2}(33,38,41)$ is calculated by the equation below:

$$
\mathrm{F}_{\mathrm{C} 2}=20 \log \frac{\text { VOUT } \mathrm{V}_{\mathrm{P}-\mathrm{P}}}{\text { Output amplitude when inputted SG3 }(1 \mathrm{MHz}): 4.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}} \quad(\mathrm{~dB})
$$

$\Delta F_{C 2}$ Frequency Relative Characteristics2 ($\mathrm{f}=180 \mathrm{MHz}$)

Relative characteristics $\Delta \mathrm{F}_{\mathrm{C} 2}$ is calculated by the difference in the output between the channels.

C.T. 1 Crosstalk1 (f = 50 MHz)

Input SG3 (50 MHz) to pin 2 only, and then measure the waveform amplitude output at OUT (33, 38, 41). The measured value is called VOUT $(33,38,41)$. Crosstalk C.T. 1 is calculated by the equation below:

$$
\begin{equation*}
\text { C.T. } 1=20 \log \frac{\operatorname{VOUT}(33,38)}{\operatorname{VOUT}(41)} \tag{dB}
\end{equation*}
$$

C.T.1' Crosstalk1 (f = 180 MHz)

Measuring condition and procedure are the same as described in C.T.1, expect SG3 to 180 MHz .

C.T. 2 Crosstalk2 ($\mathbf{f}=\mathbf{5 0} \mathbf{~ M H z}$)

Input SG3 (50 MHz) to pin 6 only, and then measure the waveform amplitude output at OUT $(33,38,41)$.
The measured value is called VOUT $(33,38,41)$. Crosstalk C.T. 2 is calculated by the equation below:

$$
\text { C.T. } 2=20 \log \frac{\operatorname{VOUT}(33,41)}{\operatorname{VOUT}(38)} \quad(d B)
$$

C.T.2' Crosstalk2 (f = $\mathbf{1 8 0} \mathbf{~ M H z) ~}$

Measuring condition and procedure are the same as described in C.T.2, expect SG3 to 180 MHz .

C.T. 3 Crosstalk3 ($\mathrm{f}=\mathbf{5 0} \mathbf{~ M H z)}$

Input SG3 $(50 \mathrm{MHz})$ to pin 11 only, and then measure the waveform amplitude output at OUT $(33,38,41)$.
The measured value is called VOUT $(33,38,41)$. Crosstalk C.T. 3 is calculated by the equation below:

$$
\begin{equation*}
\text { C.T. } 3=20 \log \frac{\operatorname{VOUT}(38,41)}{\operatorname{VOUT}(33)} \tag{dB}
\end{equation*}
$$

C.T.3' Crosstalk3 ($\mathbf{f}=\mathbf{1 8 0} \mathbf{~ M H z}$)

Measuring condition and procedure are the same as described in C.T.3, expect SG3 to 180 MHz .

Tr Pulse Characteristics1 (3 $\mathrm{V}_{\text {P. }}$)

Control the main contrast $(00 \mathrm{H})$ in order that the amplitude of output signal is $3.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$.
Control the brightness (V34) in order that the Black level of output signal is 2.0 V .
Measure the time needed for the input pulse to rise from 10% to 90% (Tr 1) and for the output pulse to rise from 10% to $90 \%(\mathrm{Tr} 2)$ with an active probe.

Pulse characteristics Tr is calculated by the equations below:

$$
\operatorname{Tr}=\sqrt{(\operatorname{Tr} 2)^{2}-(\operatorname{Tr} 1)^{2}} \quad \text { (ns) }
$$

Tf Pulse Characteristics2 (3 $\mathrm{V}_{\mathrm{P} . \mathrm{p}}$)

Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fall from 90% to 10% (Tf2) with an active probe.
Pulse characteristics Tf is calculated by the equations below:

$$
\mathrm{Tf}=\sqrt{(\mathrm{Tf} 2)^{2}-(\mathrm{Tf} 1)^{2}} \quad \text { (ns) }
$$

\square

VthCP Clamp Pulse Threshold Voltage

Turn down the SG5 input level gradually from $5.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, monitoring the waveform output.
Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable.

WCP Clamp Pulse Minimum Width

Decrease the SG5 pulse width gradually from $0.5 \mu \mathrm{~s}$, monitoring the output. Measure the SG5 pulse width (a point of 1.5 V) when the output pedestal voltage turn decrease with unstable.

OTr OSD Pulse Characteristics1

Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.

OTf OSD Pulse Characteristics2

Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.

Oaj1 OSD Adjust Control Characteristics1

Measure the amplitude output at $\operatorname{OUT}(33,38,41)$. The measured value is called VOUT $(33,38,41)$, and is treated as Oaj1.

Δ Oaj1 OSD Adjust Control Relative Characteristics1

Relative characteristics $\Delta \mathrm{Oaj} 1$ is calculated by the equation below:

$$
\begin{aligned}
\Delta \mathrm{Oaj} 1= & \operatorname{VOUT}(33) / \operatorname{VOUT}(38), \\
& \operatorname{VOUT}(38) / \operatorname{VOUT}(41), \\
& \operatorname{VOUT}(41) / \operatorname{VOUT}(33) .
\end{aligned}
$$

Oaj2 OSD Adjust Control Characteristics2

Measuring condition and procedure are the same as described in Oaj1.

Δ Oaj2 OSD Adjust Control Relative Characteristics2

Measuring condition and procedure are the same as described in $\Delta \mathrm{Oaj} 1$.

Oaj3 OSD Adjust Control Characteristics3

Measuring condition and procedure are the same as described in Oaj1.

Δ Oaj3 OSD Adjust Control Relative Characteristics3

Measuring condition and procedure are the same as described in $\Delta \mathrm{Oaj} 1$.

VthOSD OSD Input Threshold Voltage

Reduce the SG6 input level gradually, monitoring output. Measure the SG6 level when the output reaches 0 V . The measured value is called VthOSD.

VthBLK OSD BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG6 at the time.
Monitoring to output signal, decreasing the level of SG6. Measure the top level of SG6 when the blanking period is disappeared. The measured value is called VthBLK.

HBLK1 Retrace BLK Characteristics1

Measure the amplitude output is blanked by the SG7 at OUT $(33,38,41)$.
The measured value is called VOUT $(33,38,41)$, and is treated as HBLK1.

VthRET Retrace BLK Input Threshold Voltage

Confirm that output signal is being blanked by the SG7 at the time.
Monitoring to output signal, decreasing the level of SG7. Measure the top level of SG7 when the blanking period is disappeared. The measured value is called VthRET.

SS-NV SOG Input Maximum Noise Voltage

The sync's amplitude of SG 4 be changed all white into all black, increase from $0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ to $0.02 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$. No pulse output permitted.

SS-SV SOG Minimum Input Voltage

The sync's amplitude of SG 4 be changed all white or all black, decrease from $0.3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ to $0.2 \mathrm{~V}_{\text {P-p. }}$. Confirm no malfunction produced by noise.

VSH Sync Output High level

Measure the high voltage at SyncOUT. The measured value is treated as VSH.

VSL Sync Output Low Level

Measure the low voltage at SyncOUT. The measured value is treated as VSL.

TDS-F Sync Output Delay Time1

SyncOUT becomes High with sync part of SG4.
Measure the time needed for the rear edge of SG4 sync to fall from 50% and for SyncOUT to rise from 50% with an active probe. The measured value is treated as TDS-F, less than 90 ns .

TDS-R Sync Output Delay Time2

Measure the time needed for the rear edge of SG4 sync to rise from 50% and for SyncOUT to fall from 50% with an active probe. The measured value is treated as TDS-R, less than 90 ns .

VOH D/A H Output Voltage

Measure the DC voltage at D/A OUT. The measured value is treated as VOH.

VOL D/A L Output Voltage

Measure the DC voltage at D/A OUT. The measured value is treated as VOL.

IA- D/A OUT Input Current

IA- is minimum input-current when input $1 \mathrm{~V}_{\mathrm{DC}}$ to D / A OUT

IA+ D/A OUT Output Current

IA+ is maximum output-current from D/A OUT

DNL D/A Nonlinearity

The difference of differential non-linearity of D/A OUT must be less than ± 1.0 LSB.

SG No.	Signals
SG1 Video signal (all white)	Pulse with amplitude of $0.7 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}(\mathrm{f}=30 \mathrm{kHz})$. Video width of $25 \mu \mathrm{~s}$. (75%)
SG2 Video signal (step wave)	
SG3 Sine wave (for freq. char.)	
SG4 Video signal (all white, all black)	
SG5 Clamp pulse	Pulse width and amplitude are variable.
$\begin{gathered} \text { SG6 } \\ \text { OSD pulse } \end{gathered}$	Amplitude is variable.
SG7 BLK pulse	

Note: $f=30 \mathrm{kHz}$

Test Circuit

Pin Description

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
1	OSD BLK IN	-		Input pulses Connected to GND if not used
$\begin{gathered} \hline 2 \\ 6 \\ 11 \end{gathered}$	INPUT (R) INPUT (G) INPUT (B)	2.5		Clamped to about 2.5 V due to clamp pulses from pin 21. Input at low impedance.
$\begin{gathered} 3 \\ 8 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC1}}(\mathrm{R}) \\ & \mathrm{V}_{\mathrm{CC1}}(\mathrm{G}) \\ & \mathrm{V}_{\mathrm{CC1}}(\mathrm{~B}) \end{aligned}$	12		Apply equivalent voltage to 3 channels.
$\begin{gathered} 4 \\ 9 \\ 13 \end{gathered}$	$\begin{aligned} & \text { OSD IN (R) } \\ & \text { OSD IN (G) } \\ & \text { OSD IN (B) } \end{aligned}$			Input pulses Connected to GND if not used
$\begin{gathered} \hline 5 \\ 10 \\ 14 \\ 16 \\ 24 \\ 32 \\ 36 \\ 39 \end{gathered}$	GND1 (R) GND1 (G) GND GND1 (B) GND (5 V) GND GND GND 2	GND	-	-

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
7	INPUT (S on G)	When open 2.5 V		SYNC ON VIDEO input pin. Sync is negative. Input signal at pin 7, compare with the reference voltage of internal circuit in order to separate sync signal from Sync on Green signal.
17	ABL IN	When open 2.5 V		ABL (Automatic Beam Limiter) input pin. Recommended voltage range is 0 to 5 V . When ABL function is not used, set to 5 V .
$\begin{aligned} & 15 \\ & 18 \\ & 37 \\ & 40 \end{aligned}$	NC	-		-
19	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (5 \mathrm{~V}) \end{aligned}$	5	D -	-
20	SonG Sep OUT			Sync signal output pin, being of open collector output type.

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit	Function
21	$\begin{aligned} & \hline \text { Clamp } \\ & \text { Pulse IN } \end{aligned}$	-	(21)	Input pulses Input at low impedance
22	SCL	-		SCL of $\mathrm{I}^{2} \mathrm{C}$ BUS (Serial clock line) $\mathrm{V}_{\mathrm{TH}}=2.3 \mathrm{~V}$
23	SDA	-		SDA of $I^{2} C$ BUS (Serial data line) $\mathrm{V}_{\mathrm{TH}}=2.3 \mathrm{~V}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{D} / \mathrm{A} \\ & \text { OUT } \end{aligned}$			D/A output pin. Output voltage range is 0 to 5 V . Min input current is 0.18 mA when D/A output pin is 1 V . Max output current is 1.0 mA .

Pin Description (cont.)

Pin No.	Name	DC Voltage (V)	Peripheral Circuit of Pin	Description of Function
30	Retrace BLK IN	-	(30)	Input pulses Connected to GND if not used.
31 35	Main Contrast Cont Main Contrast Ref	$3.5 \text { to } 5.5$ 4.5		Non-polar capacitance is required between pin 31 and pin 35.
$\begin{aligned} & 33 \\ & 38 \\ & 41 \end{aligned}$	OUTPUT (B) OUTPUT (G) OUTPUT (R)	Variable		A resistor is needed on the GND side. Set discretionally to maximum 15 mA , depending on the required driving capacity.
42	$\mathrm{V}_{\mathrm{CC} 2}$	12		Used to supply power to output emitter follower only.
34	Main Brightness			It is recommended that the IC be used between pedestal voltage 2 V and 3 V .

Typical Characteristics

Application Method for M52749FP

Clamp Pulse Input

Clamp pulse width is recommended
above $15 \mathrm{kHz}, 1.0 \mu \mathrm{~s}$
above $30 \mathrm{kHz}, 0.5 \mu \mathrm{~s}$
above $64 \mathrm{kHz}, 0.3 \mu \mathrm{~s}$
The clamp pulse circuit in ordinary set is a long round about way, and beside high voltage, sometimes connected to external terminal, it is very easy affected by large surge.

Therefore, the figure shown below is recommended.

Notice of Application

Make the nearest distance between output pin and pull down resister.
Recommended pedestal voltage of IC output signal is 2 V .

Application Example

Package Dimensions

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6-2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
7 . With the exception of products specifed by Retionas as suitable for automione applitations, Renesas products are not designed, or whictured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear quality undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shal have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificicial life support devices or systems
) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall ind liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as wallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

RENESAS SALES OFFICES

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

