

R2A20112SP/DD

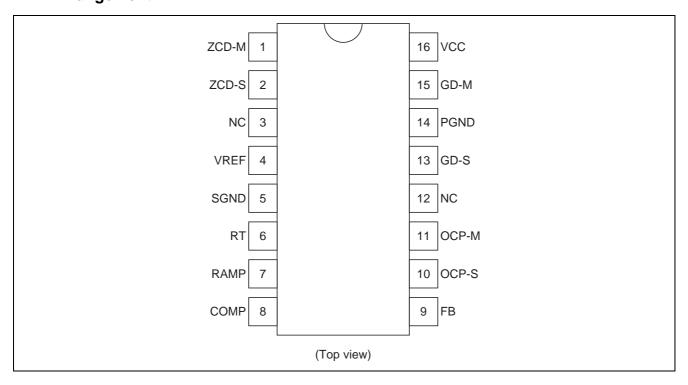
Critical Conduction Mode Interleaved PFC Control IC

REJ03D0904-0200 Preliminary Rev.2.00 Nov 13, 2007

Description

The R2A20112 controls a boost converter to provide a active power factor correction.

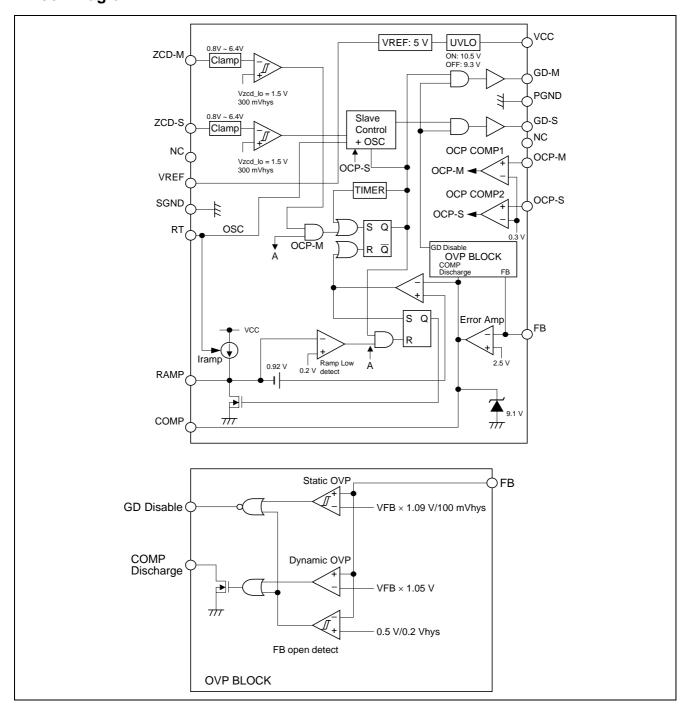
The R2A20112 adopts critical conduction mode for power factor correction and realizes high efficiency and a low switching noise by zero current switching.


Interleaving function improve ripple current on input or output capacitor by 180 degrees phase shift.

The feedback loop open detection, two mode overvoltage protection, overcurrent protection are built in the R2A20112, and can constitute a power supply system of high reliability with few external parts.

Features

- Maximum Ratings
 - Supply voltage Vcc: 24 V
 - Operating junction temperature Tjopr: -40 to +150°C
- Electrical characteristics
 - VREF output voltage VREF: $5.0 \text{ V} \pm 3\%$
 - UVLO operation start voltage VH: 10.5 V \pm 0.7 V
 - UVLO operation shutdown voltage VL: $9.3 \text{ V} \pm 0.5 \text{ V}$
 - UVLO hysteresis voltage Hysuvl: 1.2 V \pm 0.5 V
- Functions
 - Boost converter control with critical conduction mode
 - Interleaving control
 - Two mode overvoltage protection
 - Mode1: Dynamic OVP corresponding to a voltage rise by load change
 - Mode2: Static OVP corresponding to overvoltage in stable
 - Feedback loop open detection
 - Master and Slave independence overcurrent protection
 - 280 μs restart timer
 - Package lineup: Pb-free SOP-16/DILP-16


Pin Arrangement

Pin Functions

Pin No.	Pin Name	Input/Output	Function
1	ZCD-M	Input	Master converter zero current detection input terminal
2	ZCD-S	Input	Slave converter zero current detection input terminal
3	N.C.	_	Open
4	VREF	Output	Reference voltage output terminal
5	SGND	_	Ground for small signal circuit
6	RT	Input/Output	Oscillator frequency setting terminal
7	RAMP	Input/Output	Ramp waveform setting terminal
8	COMP	Output	Error amplifier output terminal
9	FB	Input	Error amplifier input terminal
10	OCP-S	Input	Slave converter overcurrent detection terminal
11	OCP-M	Input	Master converter overcurrent detection terminal
12	N.C.	_	Open
13	GD-S	Output	Slave converter Power MOSFET drive terminal
14	PGND	_	Ground for power stage
15	GD-M	Output	Master converter Power MOSFET drive terminal
16	VCC	Input	Supply voltage terminal

Block Diagram

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Ratings	Unit	Note
Supply voltage	Vcc	-0.3 to 24	V	
GD-M Peak current	lpk-gdm	±200	mA	3
GD-M DC current	ldc-gdm	±10	mA	
GD-S Peak current	lpk-gds	±200	mA	3
GD-S DC current	ldc-gds	±10	mA	
ZCD terminal current	Izcd	±10	mA	
RT terminal current	Irt	-200	μΑ	
Vref terminal current	Iref	- 5	mA	
COMP terminal current	Icomp	±1	mA	
Terminal voltage	Vt-group1	-0.3 to Vcc	V	4
	Vt-group2	-0.3 to Vref	V	5
Vref terminal voltage	Vt-ref	-0.3 to Vref+0.3	V	
Power dissipation	Pt	1	W	6
Operating junction temperature	Tj-opr	-40 to +150	°C	
Storage temperature	Tstg	-55 to +150	°C	

Notes: 1. Rated voltages are with reference to the SGND terminal.

- 2. For rated currents, inflow to the IC is indicated by (+), and outflow by (-).
- 3. Shows the transient current when driving a capacitive load.
- 4. This is the rated voltage for the following pins: RAMP, FB
- 5. This is the rated voltage for the following pins: RT, OCP-M , OCP-S
- 6. In case of R2A20112DD (DILP): θ ja = 120°C/W In case of R2A20112SP (SOP): θ ja = 120°C/W

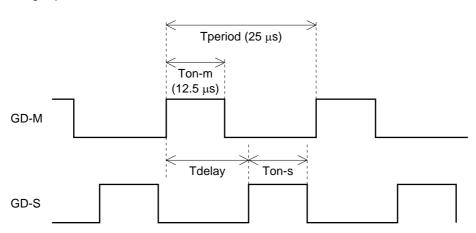
This value is a thing mounting on $40 \times 40 \times 1.6$ [mm], a glass epoxy board of wiring density 10%.

Electrical Characteristics

 $(Ta = 25^{\circ}C, Vcc = 12 \text{ V}, RT = 22 \text{ k}\Omega, OCP = GND, CRAMP = 680 pF, RZCD-GND = 51 \text{ k}\Omega, FB = COMP)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Supply	UVLO Turn-on threshold	Vuvlh	9.8	10.5	11.2	V	
	UVLO Turn-off threshold	VuvII	8.8	9.3	9.8	V	
	UVLO hysteresis Standby current		0.7	1.2	1.7	V	
			_	120	200	μА	Vcc = 8.9 V, ZCD = Open
	Operating current	Icc	_	4.9	7.0	mA	
VREF	Output voltage	Vref	4.85	5.00	5.15	V	Isource = -1 mA
	Line regulation	Vref-line	_	5	20	mV	Isource = -1 mA, Vcc = 10 V to 24 V
	Load regulation	Vref-load	_	5	20	mV	Isource = -1 mA to -5 mA
	Temperature stability	dVref	_	±80	_	ppm/°C	Ta = -40 to 125°C *1

Note: 1. Design spec.


Electrical Characteristics (cont.)

 $(Ta = 25^{\circ}C, Vcc = 12 \text{ V}, RT = 22 \text{ k}\Omega, OCP = GND, CRAMP = 680 \text{ pF}, RZCD-GND = 51 \text{ k}\Omega, FB = COMP)$

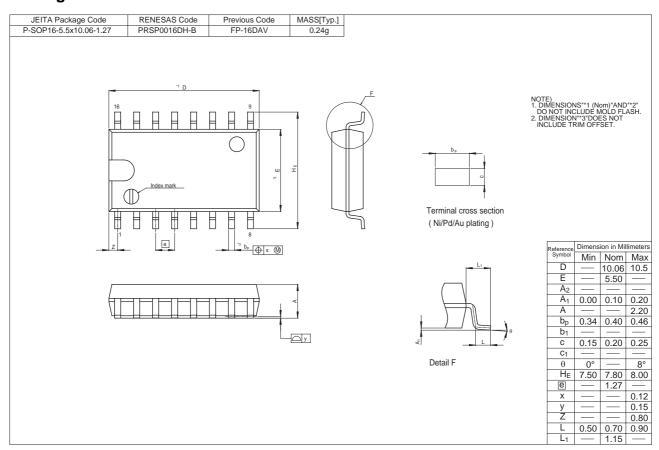
	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Error	Feedback voltage	Vfb	2.40	2.50	2.60	V	FB-COMP short, RAMP = 0 V
amplifier	Input bias current	Ifb	-0.5	0	0.5	μΑ	Measured pin: FB
	Open loop gain	Av	_	60	_	dB	*1
	Upper clamp voltage	Vclamp-comp	8.0	9.1	10.6	V	FB = 2.0 V, COMP: Open
	Low voltage	VI-comp	_	0.1	0.3	V	FB = 3.0 V, COMP: Open
	Source current	Isrc-comp	_	-120	_	μА	FB = 1.5 V, COMP = 2.5 V
	Sink current 1	Isnkcomp1	_	120	_	μА	*1
	Sink current 2	Isnkcomp2	_	300	_	μА	FB = 3.5 V, COMP = 2.5 V
	Transconductance	gm	150	200	290	μS	$FB = 2.45 \text{ V} \leftrightarrow 2.55 \text{ V},$ $COMP = 2.5 \text{ V}$
RAMP	RAMP charge current	Ic-ramp	130	150	170	μА	RAMP = 0 V to 7 V
	RAMP discharge current	ld-ramp	7	16	29	mA	FB = 1 V, COMP = 2 V, RAMP = 0 V to 1.5 V to 1 V
	Low voltage	VI-ramp	_	17	200	mV	FB = 1 V, COMP = 3 V, RAMP = 0 V to 2.5 V to open Isink = 100 μA
Zero	Upper clamp voltage	Vzcdh	5.8	6.4	7.0	V	Isource = -3 mA
current	Lower clamp voltage	Vzcdl	0.3	0.8	1.3	V	Isink = 3 mA
detector	ZCD low threshold voltage	Vzcd_lo	1.05	1.50	1.75	V	*1
	ZCD hysteresis	Hyszcd	180	300	390	mV	*1
	Input bias current	Izcd	-1	_	1	μА	1.2 V < Vzcd < 5 V
Slave	Phase delay	Phase	160	180	200	deg.	*1, *2
control	On time ratio	Ton-ratio	-5	_	5	%	*1, *2
Restart	Restart time delay	Tstart	210	280	350	μS	Cramp = 3300 pF FB = 2.0 V, COMP = 5 V

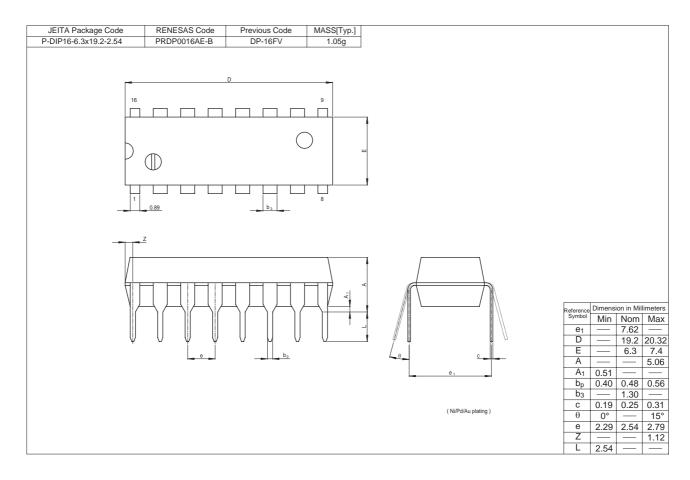
Note: 1. Design spec.

2.

Phase =
$$\frac{\text{Tdelay}}{\text{Tperiod}} \times 360 \text{ [deg.]}$$

Ton-ratio =
$$\left(1 - \frac{\text{Ton-s}}{\text{Ton-m}}\right) \times 100 \, [\%]$$


Electrical Characteristics (cont.)


 $(Ta = 25^{\circ}C, Vcc = 12 \text{ V}, RT = 22 \text{ k}\Omega, OCP = GND, CRAMP = 680 \text{ pF}, RZCD-GND = 51 \text{ k}\Omega, FB = COMP)$

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Gate	Gate Master gate drive rise time		_	30	100	ns	CL = 100 pF, Cramp = 3300 pF
drive							FB = 2.0 V, COMP = 5 V
	Slave gate drive rise time	tr-gds	_	30	100	ns	CL = 100 pF, Cramp = 3300 pF
							FB = 2.0 V, COMP = 5 V
	Master gate drive fall time	tf-gdm	_	30	100	ns	CL = 100 pF, Cramp = 3300 pF
							FB = 2.0 V, COMP = 5 V
	Slave gate drive fall time	tf-gds	_	30	100	ns	CL = 100 pF, Cramp = 3300 pF
							FB = 2.0 V, COMP = 5 V
	Master gate drive low	Vol1-gdm	_	0.05	0.2	V	Isink = 2 mA
	voltage	Vol2-gdm	_	0.03	0.7		Isink = 1 mA, VCC = 5 V
	Master gate drive high voltage	Voh-gdm	11.5	11.9	_	V	Isource = -2 mA
	Slave gate drive low	Vol1-gds	_	0.05	0.2	V	Isink = 2 mA
	voltage	Vol2-gds	_	0.03	0.7		Isink = 1 mA, VCC = 5 V
	Slave gate drive high voltage	Voh-gds	11.5	11.9	_	V	Isource = -2 mA *1
Over current protection	OCP threshold voltage	Vocp	0.27	0.3	0.33	V	
Over	Dynamic OVP threshold	Vdovp	VFB×	VFB×	VFB×	V	
voltage	voltage		1.035	1.050	1.065		
protection	Static OVP threshold	Vsovp	VFB×	VFB×	VFB×	V	COMP = Open
	voltage		1.075	1.090	1.105		
	Static OVP hysteresis	Hys-sovp	50	100	150	mV	COMP = Open
	FB open detect threshold voltage	Vfbopen	0.45	0.50	0.55	V	COMP = Open
	FB open detect hysteresis	Hysfbopen	0.16	0.20	0.24	V	COMP = Open

Note: 1. Design spec.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

 2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations. All procedures required by such laws and regulations and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures are such as a second required by the products of the date of th

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.

Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510