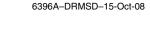
#### **Features**

- Single Chip Synthesizer + Effects, Typical Application Includes:
  - Wavetable Synthesis, Serial Midi In & Out, Parallel MIDI
  - Effects: Reverb + Chorus, on MIDI and/or Audio In
  - Surround on 2 or 4 Speakers with Intensity/Delay Control
  - Equalizer: 4 Bands, Parametric
  - Audio-In Processing through Echo, Equalizer, Surround
- Low Chip Count
  - Synthesizer, ROM/Flash, DAC
  - Effects RAM is Built-in (32K x 16)
- Low Power
  - 23 mA Typ. Operating
  - Single 3.3V Supply
  - Built-in 1.8V Regulator with Power Down Mode
- . High Quality Wavetable Synthesis
  - 16-bit Samples, 48 kHz Sampling Rate, 24 dB Digital Filter per Voice
  - Up to 64 Voices Polyphony
  - Up to 16 Mega x 16 ROM for Firmware, and PCM Data
- Available Wavetable Firmware and Sample Sets
  - CleanWave8 Low Cost General MIDI 1 Megabyte Firmware + Sample Set
  - CleanWave32 High Quality 4 Megabyte Firmware + Sample Set
  - CleanWave64 Top Quality 8 Megabyte Firmware + Sample Set
  - Other Sample Sets Available under Special Conditions
- Fast Product to Market
  - Enhanced P16 Processor with C Compiler
  - Built-in ROM Debugger
  - Flash Programmer through Dedicated Pin
- Small Footprint
  - 14 x 14 mm, 0.5 mm Pitch, 100-lead LQFP Package
- Typical Applications
  - Portable Telephones
  - Computer Karaokes, Portable Karaokes
  - Keyboards, Portable Keyboards Instruments

### 1. Description

The ATSAM2533 is a low cost derivative of the ATSAM97xx series. It retains the same high quality synthesis with up to 64 voices polyphony. The ATSAM2533 maximum wavetable memory is 32 MBytes and the parallel communication is through a standard 8-bit port.


The integrated 32K x 16 RAM allows for high quality effects without additional components.

The highly integrated architecture from ATSAM2533 combines a specialized high performance RISC-based digital signal processor (Synthesis/DSP) and a general purpose 16-bit CISC-based control processor on a single chip. An on-chip memory management unit (MMU) allows the synthesis/DSP and the control processor to share external ROM and/or RAM memory devices. An intelligent peripheral I/O interface function handles other I/O interfaces, such as the 8-bit parallel, the on-chip MIDI



# Audio Processing

ATSAM2533 Low-power Synthesizer with Effects and Built-in RAM







UART, and the CODEC control interface, with minimum intervention from the control processor.

# 2. ATSAM2533 IC Architecture Block Diagram

ATSAM2533

Synthesis/DSP 64 Slots CODEC RISC DSP Core + DAC Includes: 512 x 32 Alg RAM 128 x 28 MA1 RAM 256 x 28 MA2 RAM 32K x 16 RAM P16 Processor 256 x 28 MB RAM 256 x 16 MX RAM 256 x 12 MY RAM 16-bit CISC 64 x 13 ML RAM MMU **Processor Core** ROM or Memory includes Flash Management 256 x 16 Data RAM I/O Functions Unit

**ROM** 

Debug/Flash Prog

Includes Control/Status

Timers

MIDI USART

CODEC Data I/F Host I/F FIFO

Figure 2-1. ATSAM2533 IC Architecture Block Diagram

MIDI

8-bit Port

Debug Flash Prog

### 3. Functional Description

### 3.1 Synthesis/DSP Engine

The synthesis/DSP engine operates on a frame timing basis with the frame subdivided into 64 processes slots. Each process is itself divided into 16 micro-instructions known as an "algorithm" Up to 32 synthesis/DSP algorithms can be stored on-chip in the Alg RAM memory, allowing the device to be programmed for a number of audio signal generation/processing applications. The synthesis/DSP engine is capable of generating 64 simultaneous voices using algorithms such as wavetable synthesis with interpolation, alternate loop and 24dB resonant filtering for each voice. Slots may be linked together (ML RAM) to allow implementation of more complex synthesis algorithms.

A typical application will use half the capacity of the synthesis/DSP engine for synthesis, thus providing state of the art 32-voice wavetable polyphony. The remaining processing power will be used for typical functions like reverberation, chorus, audio in processing, surround effect, equalizer, etc.

Frequently accessed synthesis/DSP parameter data are stored into 5 banks of on-chip RAM memory. Sample data or delay lines, which are accessed relatively infrequently are stored in external ROM or internal 32K x16 RAM memory. The combination of localized micro-program memory and localized parameter data allows micro-instructions to execute in 20 ns (50 MIPS). Separate busses from each of the on-chip parameter RAM memory banks allow highly parallel data movement to increase the effectiveness of each micro-instruction. With this architecture, a single micro-instruction can accomplish up to 6 simultaneous operations (add, multiply, load, store, etc.), providing a potential throughput of 300 million operations per second (MOPS).

#### 3.2 Enhanced P16 Control Processor and I/O Functions

The Enhanced P16 control processor is the new version of P16 processor with added instructions allowing C compiling. The P16 control processor is a general purpose 16-bit CISC processor core, which runs from external memory. It includes 256 words of local RAM data memory.

The P16 control processor writes to the parameter RAM blocks within the synthesis/DSP core in order to control the synthesis process. In a typical application, the P16 control processor parses and interprets incoming commands from the MIDI UART or from the parallel 8-bit interface and then controls the Synthesis/DSP by writing into the parameter RAM banks in the DSP core. Slowly changing synthesis functions, such as LFOs, are implemented in the P16 control processor by periodically updating the DSP parameter RAM variables.

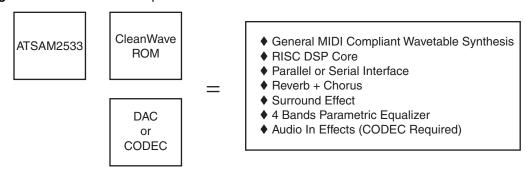
The P16 control processor interfaces with other peripheral devices, such as the system control and status registers, the on-chip MIDI UART, the on-chip timers and the parallel 8-bit interface through specialized "intelligent" peripheral I/O logic. This I/O logic automates many of the system I/O transfers to minimize the amount of overhead processing required from the P16.

The parallel 8-bit interface is implemented using one address lines (A0), a chip select signal, read and write strobes from the host and an 8-bit data bus (D0-D7).

Karaoke and keyboard applications can take advantage of the parallel 8-bit interface to communicate with the ATSAM2533 at high speed, with the MIDI IN and MIDI OUT signals remaining available.






### 3.3 Memory Management Unit (MMU)

The Memory Management Unit (MMU) block allows external ROM/Flash and/or internal 32K x 16 RAM memory resources to be shared between the synthesis/DSP and the P16 control processor. This allows a single device (i.e. internal RAM) to serve as delay lines for the synthesis/DSP and as data memory for the P16 control processor.

## 4. Typical Design Applications

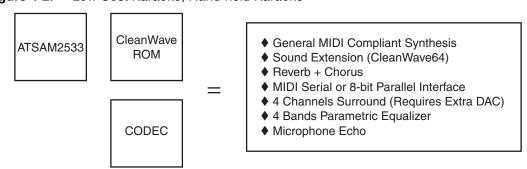

#### 4.1 Portable Telephone

Figure 4-1. Portable Telephone



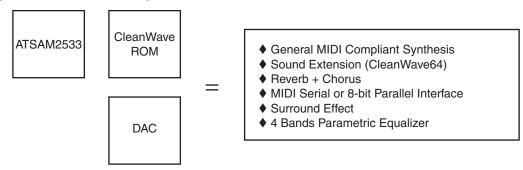

### 4.2 Low Cost Karaoke, Hand-held Karaoke

Figure 4-2. Low Cost Karaoke, Hand-held Karaoke



### 4.3 Low Cost Keyboard Instrument

Figure 4-3. Low Cost Keyboard Instrument



### 5. Pinout

## 5.1 Pin Description by Function 100-pin LQFP Package

• 5VT indicates a 5 volt tolerant input or i/O pin.

Table 5-1.ATSAM2523 Pinout by Name

| Name    | Pin#                                             | TYPE    | Function                                                                                                                                                                                                                                                                                            |
|---------|--------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GND     | 1, 12, 26, 41,<br>51, 69, 76,<br>77, 84          | PWR     | Power ground - all GND pins should be returned to digital ground                                                                                                                                                                                                                                    |
| VD18    | 79                                               | PWR     | Power for the internal PLL, $+$ 1.8V nominal (1.8V $\pm$ 10%). These pins can be connected to the output of the regulator OUTVC18 (pin 34). A 100 nF decoupling capacitor should be connected between this pin and PLL ground (pin77)                                                               |
| VD33    | 13, 25, 33,<br>42, 50, 59,<br>68, 75, 83,<br>100 | PWR     | Periphery power + 3V to 3.6V. All VD33 pins should be returned to nominal +3.3V.                                                                                                                                                                                                                    |
| OUTVC18 | 34                                               | PWR     | 3.3V to 1.8 V regulator output. The built-in regulator gives 1.8V for internal use (core supply). PLL supply pin VD18 could also be connected to this pin. Decoupling capacitors 470pF in parallel with 2.2 or 4.7µF must be connected between OUTVC18 and GND.                                     |
| D0-D7   | 4-11                                             | I/O 5VT | 8 bit data bus to host processor. Information on these pins is parallel MIDI                                                                                                                                                                                                                        |
| CS      | 2                                                | IN 5VT  | Chip select from host, active low.                                                                                                                                                                                                                                                                  |
| WR      | 99                                               | IN 5VT  | Write from host, active low.                                                                                                                                                                                                                                                                        |
| RD      | 3                                                | IN 5VT  | Read from host, active low.                                                                                                                                                                                                                                                                         |
| A0      | 98                                               | IN 5VT  | Select address of slave 8-bit interface registers: 0: data registers (read/write) 1: status register (read) control register (write) This pin has a built-in pull down.                                                                                                                             |
| IRQ     | 97                                               | OUT     | Slave 8bit interface interrupt request. High when data is ready to be transferred from chip to host. Reset by a read from host (CS/=0 and RD/=0)                                                                                                                                                    |
| RESET   | 82                                               | IN 5VT  | Master reset input, active low.                                                                                                                                                                                                                                                                     |
| X1,X2   | 80, 81                                           | -       | Crystal connection. Crystal frequency should be Fs * 256 (typ 12.288 MHz) Xtal frequency is internally multiplied by 4 to provide the IC master clock. An external 12.288 MHz clock can also be used on X1 (Analog or 3.3V CMOS logic). X2 cannot be used to drive external ICs, use CKOUT instead. |
| CKOUT   | 88                                               | OUT     | Buffered X2 output, can be used to drive external DAC master clock (256 * Fs)                                                                                                                                                                                                                       |
| DABD0-1 | 91, 92                                           | OUT     | Two stereo serial audio data output (4 audio channels). Each output holds 64 bits (2 x 32) of serial data per frame. Audio data has up to 20 bits precision.                                                                                                                                        |
| CLBD    | 89                                               | OUT     | Audio data bit clock, provides timing to DABD0-1, DAAD.                                                                                                                                                                                                                                             |
| WSBD    | 90                                               | OUT     | Audio data word select. The timing of WSBD can be selected to be I2S or Japanese compatible.                                                                                                                                                                                                        |
| DAAD    | 93                                               | IN 5VT  | Stereo serial audio data input.                                                                                                                                                                                                                                                                     |
| P0-P3   | 49, 52-54                                        | I/O 5VT | General purpose programmable I/O pins. These pins have a built-in pull down.                                                                                                                                                                                                                        |





 Table 5-1.
 ATSAM2523 Pinout by Name (Continued)

| Name     | Pin#                                | TYPE    | Function                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DBCLK    | 85                                  | IN 5VT  | Debug clock, should be connected to VD33 under normal operation. If DBCLK is found low just after RESET, then the internal ROM debugger/Flash programmer is started                                                                                                                                                                                                   |
| DBDATA   | 87                                  | I/O 5VT | Debug data, allows serial communication for debug/Flash programming. This pin has a built-in pull down.                                                                                                                                                                                                                                                               |
| DBACK    | 86                                  | OUT     | Debug ack, toggled each time a bit is received/sent on DBDATA                                                                                                                                                                                                                                                                                                         |
| MIDI IN  | 96                                  | IN 5VT  | MIDI IN, input. This pin has a built-in pull up.                                                                                                                                                                                                                                                                                                                      |
| MIDI OUT | 94                                  | OUT     | MIDI OUT, output.                                                                                                                                                                                                                                                                                                                                                     |
| WA0-23   | 35-40,<br>43-48,<br>55-58,<br>60-67 | OUT     | External memory address (ROM/Flash). Up to 32 Mega bytes.                                                                                                                                                                                                                                                                                                             |
| WD0-15   | 14-24,<br>27-31                     | I/O 5VT | External ROM/Flash data.                                                                                                                                                                                                                                                                                                                                              |
| WCS      | 70                                  | OUT     | External ROM/Flash chip select, active low.                                                                                                                                                                                                                                                                                                                           |
| WWE      | 72                                  | OUT     | External Flash write enable, active low.                                                                                                                                                                                                                                                                                                                              |
| WOE      | 71                                  | OUT     | External ROM/Flash output enable, active low.                                                                                                                                                                                                                                                                                                                         |
| TEST0-1  | 95, 78                              | IN      | Test pins, should be returned to GND.                                                                                                                                                                                                                                                                                                                                 |
| PDWN     | 32                                  | IN      | Power down, active low. When power down is active, WCS, WWE, WOE, address and data lines are floated. All other outputs are set to 0. The crystal oscillator is stopped, OUTVC18 is set to 0 and 1.8V supply voltage is removed from the core. To exit from power down, PDWN must be set to VD33, then RESET applied. When unused this pin must be connected to VD33. |
| NC       | 73, 74                              | _       | Not connected pins.                                                                                                                                                                                                                                                                                                                                                   |

## 5.2 Pinout by Pin Number

 Table 5-2.
 ATSAM2523 Pinout by Pin Number

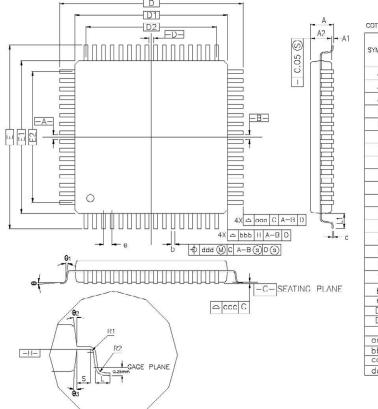
| Pin# | Signal Name |
|------|-------------|
| 1    | GND         |
| 2    | CS          |
| 3    | RD          |
| 4    | D0          |
| 5    | D1          |
| 6    | D2          |
| 7    | D3          |
| 8    | D4          |
| 9    | D5          |
| 10   | D6          |
| 11   | D7          |
| 12   | GND         |
| 13   | VD33        |
| 14   | WD0         |
| 15   | WD1         |
| 16   | WD2         |
| 17   | WD3         |
| 18   | WD4         |
| 19   | WD5         |
| 20   | WD6         |
| 21   | WD7         |
| 22   | WD8         |
| 23   | WD9         |
| 24   | WD10        |
| 25   | VD33        |

| Pin# | Signal Name |  |  |
|------|-------------|--|--|
| 26   | GND         |  |  |
| 27   | WD11        |  |  |
| 28   | WD12        |  |  |
| 29   | WD13        |  |  |
| 30   | WD14        |  |  |
| 31   | WD14        |  |  |
|      |             |  |  |
| 32   | PDWN        |  |  |
| 33   | VD33        |  |  |
| 34   | OUTVC18     |  |  |
| 35   | WA0         |  |  |
| 36   | WA1         |  |  |
| 37   | WA2         |  |  |
| 38   | WA3         |  |  |
| 39   | WA4         |  |  |
| 40   | WA5         |  |  |
| 41   | GND         |  |  |
| 42   | VD33        |  |  |
| 43   | WA6         |  |  |
| 44   | WA7         |  |  |
| 45   | WA8         |  |  |
| 46   | WA9         |  |  |
| 47   | WA10        |  |  |
| 48   | WA11        |  |  |
| 49   | P0          |  |  |
| 50   | VD33        |  |  |

| Pin# | Signal Name |
|------|-------------|
| 51   | GND         |
| 52   | P1          |
| 53   | P2          |
| 54   | P3          |
| 55   | WA12        |
| 56   | WA13        |
| 57   | WA14        |
| 58   | WA15        |
| 59   | VD33        |
| 60   | WA16        |
| 61   | WA17        |
| 62   | WA18        |
| 63   | WA19        |
| 64   | WA20        |
| 65   | WA21        |
| 66   | WA22        |
| 67   | WA23        |
| 68   | VD33        |
| 69   | GND         |
| 70   | WCS         |
| 71   | WOE         |
| 72   | WWE         |
| 73   | NC          |
| 74   | NC          |
| 75   | VD33        |

| Pin# | Signal Name |
|------|-------------|
| 76   | GND         |
| 77   | GND         |
| 78   | TEST1       |
| 79   | VD18        |
| 80   | X1          |
| 81   | X2          |
| 82   | RESET       |
| 83   | VD33        |
| 84   | GND         |
| 85   | DBCLK       |
| 86   | DBACK       |
| 87   | DBDATA      |
| 88   | CKOUT       |
| 89   | CLBD        |
| 90   | WSBD        |
| 91   | DABD0       |
| 92   | DABD1       |
| 93   | DAAD        |
| 94   | MIDI_OUT    |
| 95   | TEST0       |
| 96   | MIDI_IN     |
| 97   | IRQ         |
| 98   | A0          |
| 99   | WR          |
| 100  | VD33        |






## 6. Marking



## 7. Mechanical Dimensions

Figure 7-1. 100-lead Quad Flat Pack (LQFP100)



| COTROL         | DIMENS | IONS A  | RE IN | MILLIME         | ETERS.   |       |  |  |
|----------------|--------|---------|-------|-----------------|----------|-------|--|--|
| SYMBOL         | M      | ILLIMET | ER    |                 | INCH     |       |  |  |
| SINIBUL        | MIN.   | NOM.    | MAX.  | MIN.            | NOM.     | MAX.  |  |  |
| Α              | 2_3    | 0==     | 1.60  | -               |          | 0.063 |  |  |
| A1             | 0.05   | 1:1     | 0.15  | 0.002           | -        | 0.006 |  |  |
| A2             | 1.35   | 1.40    | 1.45  | 0.053           | 0.055    | 0.057 |  |  |
| D              | 1      | 6.00 B  | sc.   | 0.              | 630 B    | SC.   |  |  |
| D1             | 1      | 4.00 B  | SC.   | 0.              | 551 B    | SC.   |  |  |
| Ε              | 11     | 6.00 B  | SC.   | 0.              | 630 B    | SC.   |  |  |
| E1             | 1      | 4.00 B  | SC.   | 0.              | 551 B    | SC.   |  |  |
| R2             | 0.08   | -       | 0.20  | 0.003           | -        | 800.0 |  |  |
| R <sub>1</sub> | 0.08   |         | _     | 0.003           | _        |       |  |  |
| θ              | 0°     | 3.5*    | 7*    | 0,              | 3.5*     | 7*    |  |  |
| θ1             | 0,     | -       | _     | 0,              | -        | _     |  |  |
| θг             | 11"    | 12*     | 13*   | 11"             | 12       | 13°   |  |  |
| θз             | 11"    | 12"     | 13    | 11"             | 12       | 1.3*  |  |  |
| С              | 0.09   | _       | 0.20  | 0.004           |          | 0.008 |  |  |
| L              | 0.45   | 0.60    | 0.75  | 0.018           | 0.024    | 0.030 |  |  |
| Lı             | 1      | .00 RE  | F     | 0.              | .039 R   | EF    |  |  |
| S              | 0.20   | =       | _     | 0.008           | <b>1</b> | 1=    |  |  |
| Ь              | 0.17   | 0.20    | 0.27  | 0.007           | 0.008    | 0.011 |  |  |
| е              |        | 0.50    | BSC.  | 0.020 BSC.      |          |       |  |  |
| D2             |        | 12.00   | )     | 0.472           |          |       |  |  |
| E2             |        | 12.00   | נ     | 0.472           |          |       |  |  |
| TOLERAN        |        | ANCES   | OF FO | RM AND POSITION |          |       |  |  |
| aaa            | 0.20   |         |       | 0.008           |          |       |  |  |
| bbb            |        | 0.20    |       | 800.0           |          |       |  |  |
| CCC            |        | 0.08    |       | 0.003           |          |       |  |  |
| ddd            |        | 0.08    |       | (               | 0.003    |       |  |  |

### 8. Electrical Characteristics

### 8.1 Absolute Maximum Ratings(\*)

All voltages with respect to 0V, GND = 0V.

| Temperature under bias55°C to +125°C                                    |  |
|-------------------------------------------------------------------------|--|
| Storage Temperature65°C to +150°C                                       |  |
| Voltage on any 5 volt tolerant pin0.3 to 5.5V                           |  |
| Voltage on any non 5 volt tolerant pin0.3 to V <sub>D33</sub> + 0.3V    |  |
| Supply Voltage       -0.3V to 3.6V         V <sub>D33</sub> -0.3V to 2V |  |
| Maximum IOL per I/O pin 10 mA                                           |  |
| Maximum IOH per I/O pin 10 mA                                           |  |
| Maximum Output current from OUTVC18 pin (max duration = 1sec) IREGO     |  |

\*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating Conditions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.





## 8.2 Recommended Operating Conditions

 Table 8-1.
 Recommended Operating Conditions

| Symbol           | Parameter                     | Min  | Тур | Mx   | Unit |
|------------------|-------------------------------|------|-----|------|------|
| V <sub>D33</sub> | Supply voltage                | 3    | 3.3 | 3.6  | V    |
| $V_{D18}$        | Supply voltage (PLL)          | 1.65 | 1.8 | 1.95 | ٧    |
| IREGO            | OUTVC18 output current        | -    | 30  |      | mA   |
| T <sub>A</sub>   | Operating ambient temperature | -25  | -   | 70   | °C   |

### 8.3 DC Characteristics

**Table 8-2.** DC Characteristics ( $T_A = 25^{\circ}C$ ,  $V_{D33} = 3.3V \pm 10\%$ ,  $V_{D18} = 1.8V \pm 10\%$ )

| Symbol          | Parameter                                          | Min      | Тур | Mx  | Unit |
|-----------------|----------------------------------------------------|----------|-----|-----|------|
| V <sub>IL</sub> | Low level input voltage                            | -0.3     | -   | 0.8 | V    |
| V <sub>IH</sub> | High level input voltage on 5VT pins               | 2        | -   | 5.5 | V    |
| $V_{IH}$        | High level input voltage on non-5VT pins           | 2        | -   | 3.6 | V    |
| V <sub>OL</sub> | Low level output voltage IOL=4mA                   | -        | -   | 0.4 | V    |
| $V_{OH}$        | High level output voltage IOH=4mA                  | VD33-0.4 | -   | -   | V    |
| ID18            | Dower cumply current at (arrestal free 12.200 MHz) |          | 0.7 |     | mA   |
| ID33            | Power supply current at (crystal freq.=12.288 MHz) |          | 22  |     | mA   |
| _               | Power down supply current                          |          | 0.6 |     | mA   |
| Rud             | Pull-up or Pull-down resistor                      | 8        | 13  | 25  | kOhm |

### 9. Timings

All timing conditions:  $V_{D33}$  =3.3V,  $V_{D18}$  =1.8V,  $T_A$  = 25°C, all outputs except X2 have load capacitance = 30 pF.

All timings refer to tck, which is the internal master clock period.

The internal master clock frequency is 4 times the frequency at pin X1. Therefore tck = txtal/4.

The sampling rate is given by 1/(tck\*1024). The maximum crystal frequency/clock frequency at X1 is 12.288 MHz (48 kHz sampling rate).

#### 9.1 Crystal Frequency Selection Considerations

There is a trade-off between the crystal frequency and the support of widely available external ROM/Flash components. Table 9-1 allows to select the best fit for a given application;

 Table 9-1.
 Crystal Frequency Selection Chart

| Sample Rate (kHz) | Xtal (MHz) | tck (ns) | ROM tA (ns) |
|-------------------|------------|----------|-------------|
| 48                | 12.288     | 20.35    | 92          |
| 44.1              | 11.2896    | 22.14    | 101         |
| 37.5              | 9.60       | 26.04    | 120         |
| 31.25             | 8.00       | 31.25    | 146         |

Using 12.288 MHz crystal frequency allows to use widely available ROM/Flash with 90 ns access time, while providing state of the art 48 kHz sampling rate.

#### 9.2 PC Host Interface

#### 9.2.1 Timings

Figure 9-1. Host Interface Read Cycle

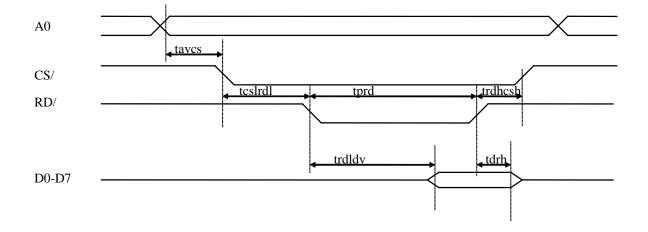







Figure 9-2. Host Interface Write Cycle

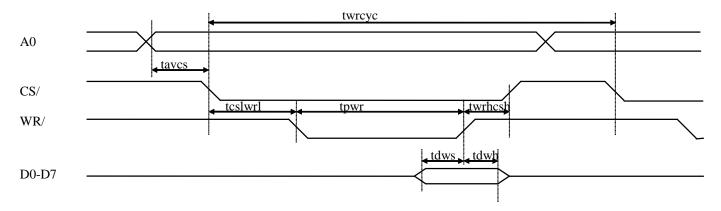



Table 9-2. Timing Parameters

| Symbol   | Parameter                        | Min | Тур | Mx | Unit |
|----------|----------------------------------|-----|-----|----|------|
| tavcs    | Address valid to chip select low | 0   | -   | -  | ns   |
| tcslrdl  | Chip select low to RD low        | 5   | -   | -  | ns   |
| trdhcsh  | RD high to CS high               | 5   | -   | -  | ns   |
| tprd     | RD pulse width                   | 50  | -   | -  | ns   |
| trdldv   | Data out valid from RD           | -   | -   | 20 | ns   |
| tdrh     | Data out hold from RD            | 5   | -   | 10 | ns   |
| tcslrwrl | Chip select low to WR low        | 5   | -   | -  | ns   |
| twrhcsh  | WR high to CS high               | 5   | -   | -  | ns   |
| tpwr     | WR pulse width                   | 50  | -   | -  | ns   |
| tdws     | Write data setup time            | 10  | -   | -  | ns   |
| tdwh     | Write data hold time             | 0   | -   | -  | ns   |
| twrcyc   | Write cycle                      | 128 | -   | -  | tck  |

#### 9.2.2 IO Status Register

| 7  | 6  | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|---|---|---|---|---|---|
| TE | RF | Х | Х | Х | X | Х | Х |

Status register is read when A0 = 1,  $\overline{RD} = 0$ ,  $\overline{CS} = 0$ .

#### • TE: Transmit Empty

If 0, data from ATSAM2533 to host is pending and IRQ is high. Reading the data at A0 = 0 will set TE to 1 and clear IRQ.

#### • RF: Receiver Full

If 0, then ATSAM2533 is ready to accept DATA from host.

### 9.3 External ROM/Flash Timings

Figure 9-3. RO/Flash Read Cycle

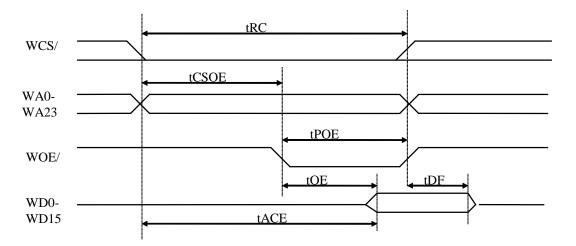



 Table 9-3.
 External ROM/Flash Timing Parameters

| Symbol | Parameter                                  | Min     | Тур   | Mx      | Unit |
|--------|--------------------------------------------|---------|-------|---------|------|
| tRC    | Read cycle time                            | 5*tck   | -     | 6*tck   | ns   |
| tCSOE  | Chip select low/address valid to WOE low   | 2*tck-5 | -     | 3*tck+5 | ns   |
| tPOE   | Output enable pulse width                  | -       | 3*tck | -       | ns   |
| tACE   | Chip select/address access time            | 5*tck-5 | -     | -       | ns   |
| tOE    | Output enable access time                  | 3*tck-5 | -     | -       | ns   |
| tDF    | Chip select or WOE high to input data Hi-Z | 0       | -     | 2*tck-5 | ns   |





## 9.4 External Flash Write Timings

Figure 9-4. External Flash Write Cycle

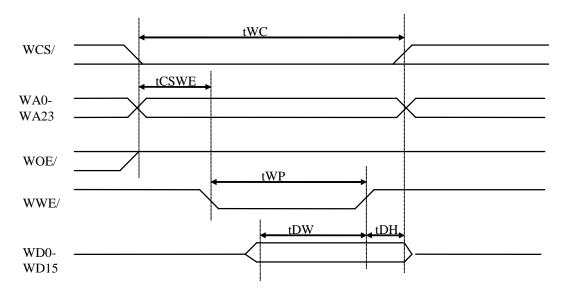
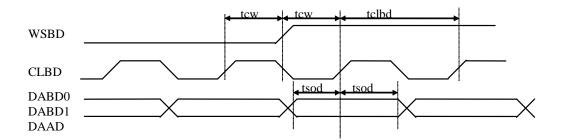
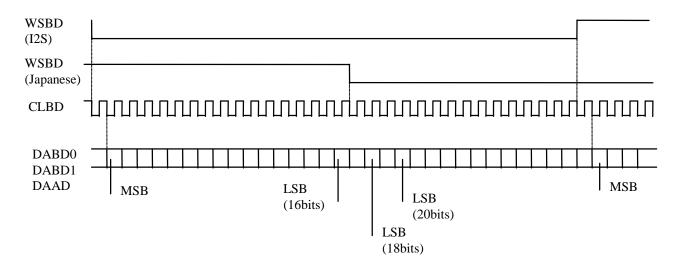




 Table 9-4.
 External Flash Write Timing Parameters

| Symbol | Parameter                                                                          | Min      | Тур   | Mx    | Unit |
|--------|------------------------------------------------------------------------------------|----------|-------|-------|------|
| tWC    | Write cycle time                                                                   | 5*tck    | -     | 6*tck | ns   |
| tCSWE  | Write enable low from $\overline{\text{CS}}$ or Address or $\overline{\text{WOE}}$ | 2*tck-10 | -     | -     | ns   |
| tWP    | Write pulse width                                                                  | -        | 4*tck | -     | ns   |
| tDW    | Data out setup time                                                                | 4*tck-10 | -     | -     | ns   |
| tDH    | Data out hold time                                                                 | 10       | -     | -     | ns   |

### 9.5 Digital Audio Timing


Figure 9-5. Digital Audio Timing



**Table 9-5.** Digital Audio Timing Parameters

| Symbol | Parameter                          | Min      | Тур    | Mx | Unit |
|--------|------------------------------------|----------|--------|----|------|
| tcw    | CLBD rising to WSBD change         | 8*tck-10 | -      | -  | ns   |
| tsod   | DABD valid prior/after CLBD rising | 8*tck-10 | -      | -  | ns   |
| tclbd  | CLBD cycle time                    | -        | 16*tck | -  | ns   |

Figure 9-6. Digital Audio Frame Format



#### Note:

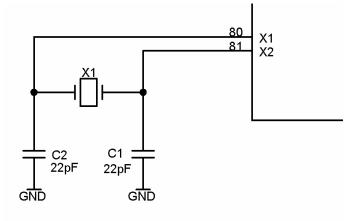
- Selection between I2S and Japanese format is a firmware option.
- DAAD is 16 bits only.





### 10. Reset and Power-down

During power-up, the RESET input should be held low until the crystal oscillator and PLL are stabilized, which can take about 20ms.


After the low to high transition of RESET, following happens:

- The Synthesis/DSP enters an idle state.
- P16 program execution starts from address 0100H in ROM space (WCS low).

If PDWN is asserted low and VD18 connected to OUTVC18, then the crystal oscillator and PLL will be stopped. The chip enters a deep power down sleep mode, as power is removed from the core. To exit power down, PDWN has to be asserted high, then RESET applied.

## 11. Recommended Crystal Compensation

Figure 11-1. Recommended Crystal Compensation



### 12. Recommended Board Layout

Like all HCMOS high integration ICs, following simple rules of board layout are mandatory for reliable operation:

• GND, VD33, VD18 distribution, decouplings

All GND, VD33, VD18 pins should be connected. A GND plane is strongly recommended below the ATSAM2533. The board GND + VD33 planes could be in grid form to minimize EMI.

Recommended VD18 decoupling is 0.1  $\mu$ F close to the VD18 pin and 470 pF in parallel with 2.2 or 4.7  $\mu$ F close to OUTVC18 pin. VD33 requires 0.1 uF at each corner of the IC with an additional 10  $\mu$ FT capacitor that should be placed close to the crystal.

#### · Crystal, LFT

The paths between the crystal, the crystal compensation capacitors and the ATSAM2533 should be short and shielded. The ground return from the compensation capacitors should be the GND plane from ATSAM2533.

#### Busses

Parallel layout from D0-D7 and WA0-WA23/WD0-WD15 should be avoided. The D0-D7 bus is an asynchronous type bus. Even on short distances, it can induce pulses on WA0-WA23/WD0-WD15 which can corrupt address and/or data on these busses.

A ground plane should be implemented below the D0-D7 bus, which is connected to the host and to the ATSAM2533 GND.

A ground plane should be implemented below the WA0-WA23/WD0-WD15 bus, which is connected to the ROM/Flash grounds and to the ATSAM2533.

#### Analog section

A specific AGND ground plane should be provided, which is connected to the GND ground by a single trace. No digital signals should cross the AGND plane.

Refer to the CODEC vendor recommended layout for correct implementation of the analog section.





# 13. Revision History

### Table 13-1.

| Document Ref. | Comments     | Change<br>Request<br>Ref |
|---------------|--------------|--------------------------|
|               | First issue. |                          |



#### Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

#### International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

Web Site

www.atmel.com/Dream

Literature Requests www.atmel.com/literature Technical Support

info@dream.fr Atmel techincal support Sales Contacts

www.atmel.com/contacts/

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel<sup>®</sup>, Atmel logo and combinations thereof, DREAM<sup>®</sup> and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.