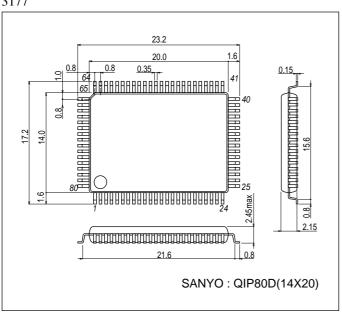


SANYO Semiconductors DATA SHEET

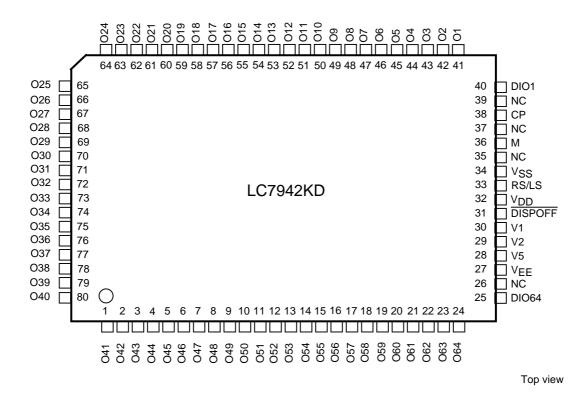
LC7942KD — CMOSIC Dot-Matrix LCD Drivers

Overview

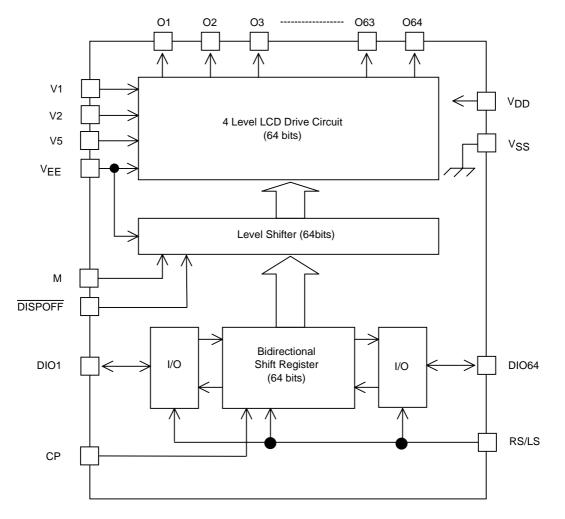
The LC7942KD is a common driver LSI for driving large dot-matrix LCD displays. It features a built-in 64-bit bidirectional shift register and a 4-level LCD driver. It can also be connected in cascade to increase the number of bits. The LC7942KD is designed to be used with LC7940KD (QIP100D) or LC7941KDR (QIP100DR) segment drivers to drive large LCD panels.


Features

- 64 built-in LCD display drive circuits
- 1/64 to 1/128 display duty cycle
- Input/outputs for cascade conection
- Bias supply voltages can be supplied externally
- Operating supply voltage and ambient temperature:
 2.7 to 5.5V logic supply (V_{DD}) at Ta = -20 to +85°C
 8 to 20V LCD supply (V_{DD}-V_{EE}) at Ta = -20 to +85°C
- CMOS process
- package: QIP80D


- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Package Dimensions


unit: mm (typ) 3177

Pin Assignment

Block Diagram

Pin Function

Pin No.	Pin name	Input/Output	Functions					
32	V _{DD}	Supply	V _{DD} -V _{SS} is the logic supply.					
34	V _{SS}		V _{DD} -V _{EE} is the LCD supply.					
27	VEE							
30	V1	Supply	LCD panel drive voltage supplies.					
29	V2		V1 and V_{EE} are selected levels.					
28	V5		V2 and V5 are non-selected levels.					
38	CP	I	Display data input clock	k (falling-edge trigger).			
40	DIO1	I/O						
25	DIO64	I/O	RS/LS	Data Transfe	r Direction	DIO1	DIO64	
33 RS/LS	RS/LS	I	L (right shift)	01→064		IN	OUT	
			H (left shift)	O64→O1		OUT	IN	
36	М	I	LCD panel drive voltage alternating control signal.					
31	DISPOFF	ļ	O1 to O64 output control input pins.					
			LCD drive outputs					
41 to 80	O1 to O40	Output	LCD drive outputs					
41 to 80 1 to 24	O1 to O40 O41 to O64	Output	The output drive level is	s determined by the c	lisplay data, M sig	gnal and $\overline{\text{DIS}}$	POFF input as	
		Output	The output drive level is shown below.	-		-		
		Output	The output drive level is shown below.	Data	DISPOFF	-	Output	
		Output	The output drive level is shown below.	Data L	DISPOFF	-	Output V2	
		Output	The output drive level is shown below.	Data	DISPOFF	-	Output	
		Output	The output drive level is shown below.	Data L	DISPOFF	-	Output V2	
		Output	The output drive level is shown below. M L L	Data L H	DISPOFF H H	-	Output V2 V _{EE}	
		Output	The output drive level is shown below. M L L H	Data L H L	DISPOFF H H H	-	Output V2 V <u>EE</u> V5	
1 to 24	O41 to O64	Output	The output drive level is shown below. M L L H H H * Don't care (To be set	Data L H L H K	DISPOFF H H H H	-	Output V2 VEE V5 V1	
1 to 24 26		Output	The output drive level is shown below. M L L H H H	Data L H L H K	DISPOFF H H H H	-	Output V2 VEE V5 V1	
1 to 24	O41 to O64	Output	The output drive level is shown below. M L L H H H * Don't care (To be set	Data L H L H K	DISPOFF H H H H	-	Output V2 VEE V5 V1	

Specifications

Absolute Maximum Ratings at Ta= $25\pm2^{\circ}$ C, V_{SS} = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage (logic)	V _{DD} max	-	-0.3 to +7.0	V
Maximum supply voltage (LCD)	V _{DD} -V _{EE} max	*1	0 to 22	V
Maximum input voltage	V _{IN} max	-	-0.3 to V _{DD} +0.3	V
Operating temperature range	Topr	-	-20 to +85	°C
Storage temperature range	Tstg	-	-40 to +125	°C

Note *1 The voltages V1, V2, and V5 must obey the relationships: $V_{DD} \ge V1 > V2 > V5 > V_{EE}$, $V_{DD} - V2 \le 7V$, V5- $V_{EE} \le 7V$

Allowable Operating Ranges at Ta = -20 to 85° C, V_{SS} = 0V

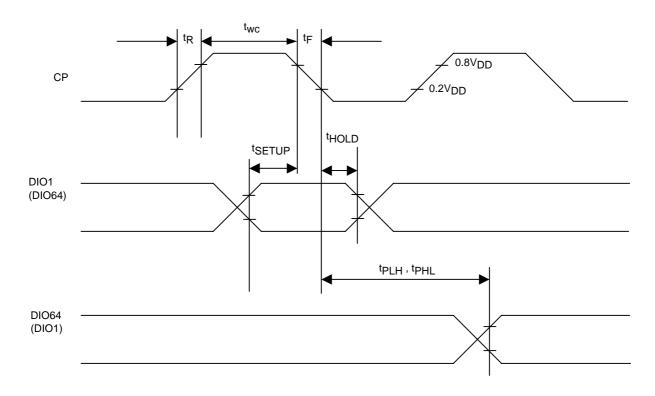
Deremeter	Current al	Que dition -		L Lucit			
Parameter	Symbol	Conditions	min	typ	max	Unit	
Supply voltage (logic)	V _{DD}	-	2.7	-	5.5	V	
Supply voltage (LCD)	V _{DD} -V _{EE}	*2, 3	8	-	20	V	
Input high level voltage	VIH	DIO1, DIO64, CP, M, RS/LS, DISPOFF	0.8V _{DD}	-	-	V	
Input low level voltage	VIL	DIO1, DIO64, CP, M, RS/LS, DISPOFF	-	-	0.2V _{DD}	V	
CP (Shift clock)	fCP	СР	-	-	1	MHz	
CP (pulse width)	tWC	СР	125	-	-	ns	
Setup time	^t SETUP	DIO1→CP, DIO64→CP	100	-	-	ns	
Hold time	^t HOLD	DIO1→CP, DIO64→CP	100	-	-	ns	
CP rise time	^t R	СР	-	-	50	ns	
CP fall time	tF	СР	-	-	50	ns	

Note *2 The voltages V1, V2, and V5 must obey the relationships:

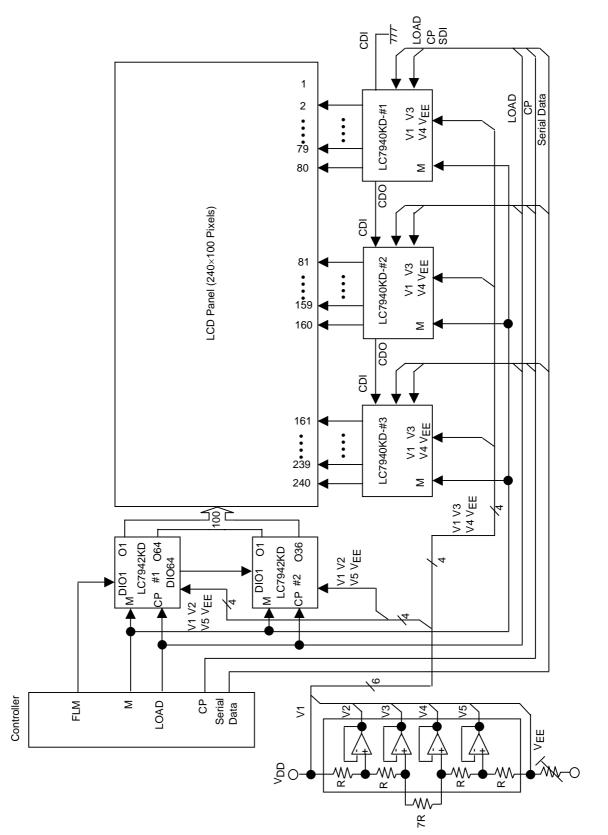
V_{DD}≥V1>V2>V5>V_{EE}, V_{DD}-V2≤7V, V5-V_{EE}≤7V

*3 When applying power, apply power to the LCD drive block after applying power to the logic block or apply power to both the blocks simultaneously. When turning off power, turn off power to the logic block after turning off power to the LCD drive block or turn off power to both the blocks simultaneously.

Electrical Characteristics at $Ta = 25 \pm 2^{\circ}C$, $V_{SS} = 0V$, $V_{DD} = 2.7$ to 5.5V


Deveryation	0	Symbol Conditions		1.114		
Parameter	Symbol		min	typ	max	Unit
Input high level current	Ιн	V _{IN} = V _{DD} , V _{DD} = 5.5V, DIO1, DIO64, CP, M, RS/LS, DISPOFF	-	-	1	μΑ
Input low level current	Ι _{ΙL}	V _{IN} = V _{SS} , V _{DD} = 5.5V, DIO1, DIO64, CP, M, RS/LS, DISPOFF	-1	-	-	μΑ
Output high level voltage	VOH	I _{OH} = -0.4mA, DIO1, DIO64	V _{DD} -0.4	-	-	V
Output low level voltage	VOL	I _{OL} = 0.4mA, DIO1, DIO64	-	-	0.4	V
Driver on resistance	R _{ON}	V _{DD} -V _{EE} = 18V. V _{DE} -V _O = 0.25V V _{DD} = 4.5V *4; O1 to O64	-	-	1.5	kΩ
V _{DD} static Current	IDD	$V_{DD}-V_{EE} = 18V, CP = V_{DD}$	-	-	100	μA

Note *4 $V_{DE} = V1$ or V2 or V5 or V_{EE} , $V1 = V_{DD}$, $V2 = 10/11(V_{DD}-V_{EE})$, $V5 = 1/11(V_{DD}-V_{EE})$


Switching Characteristics at Ta = $25\pm2^{\circ}$ C, V_{SS} = 0V, V_{DD} = 2.7 to 5.5V

Deremeter	Symbol	Conditions	Ratings			Linit
Parameter	Symbol	Conditions	min	typ	max	Unit
Output delay time	^t PLH	CL=30pF; CP \rightarrow DIO1, CP \rightarrow DIO64	-	-	250	ns
	^t PHL	CL=30pF; CP→DIO1, CP→DIO64	-	-	250	ns

Switching Characteristics Diagram

Application Notes LCD Panel

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 2006. Specifications and information herein are subject to change without notice.