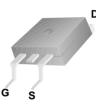
July 2008

UniFET

٦Μ

FDB52N20 200V N-Channel MOSFET


Features

- 52A, 200V, $R_{DS(on)} = 0.049\Omega @V_{GS} = 10 V$
- Low gate charge (typical 49 nC)
- Low C_{rss} (typical 66 pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies and active power factor correction.

G O S

Absolute Maximum Ratings

Symbol	Parameter			FDB52N20	Unit	
V _{DSS}	Drain-Source Voltage			200	V	
I _D	Drain Current	- Continuous (T _C = 25° - Continuous (T _C = 100		52 33	A A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	208	A	
V _{GSS}	Gate-Source voltage			±30	V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	2520	mJ	
I _{AR}	Avalanche Current		(Note 1)	52	A	
E _{AR}	Repetitive Avalance	he Energy	(Note 1)	35.7	mJ	
dv/dt	Peak Diode Recov	ery dv/dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation $(T_C = 25^{\circ}C)$ - Derate above $25^{\circ}C$			357 2.86	W W/°C	
T _{J,} T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds		rpose,	300	°C	

Thermal Characteristics

Symbol	Parameter	Min.	Max.	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.35	°C/W
R _{θJA} *	Thermal Resistance, Junction-to-Ambient*		40	°C/W
$R_{ extsf{ heta}JA}$	R _{0JA} Thermal Resistance, Junction-to-Ambient		62.5	°C/W

* When mounted on the minimum pad size recommended (PCB Mount)

Package Marking and Ordering Information

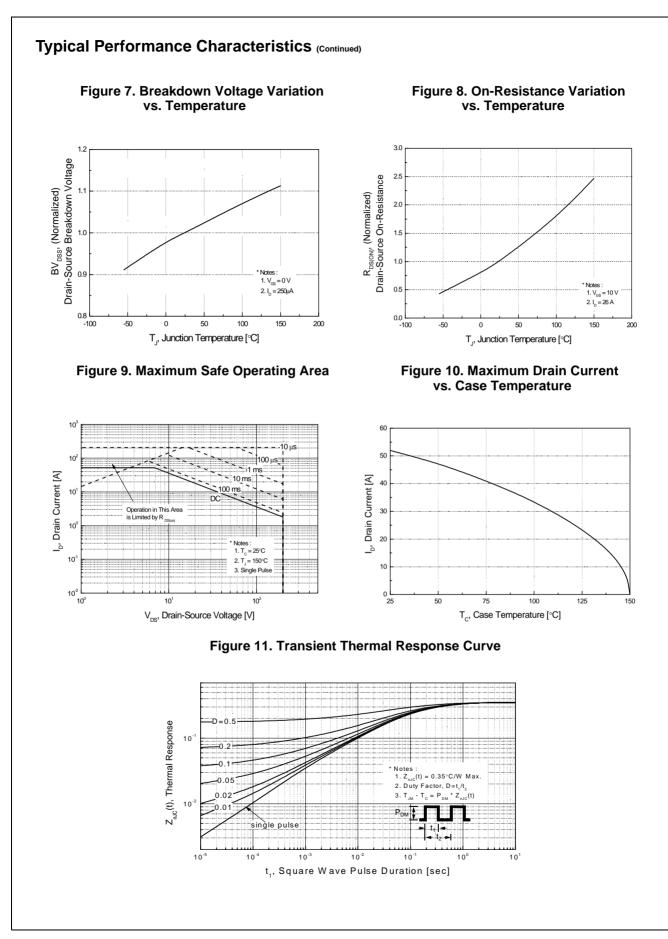
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB52N20	FDB52N20TM	D ² -PAK	330mm	24mm	800

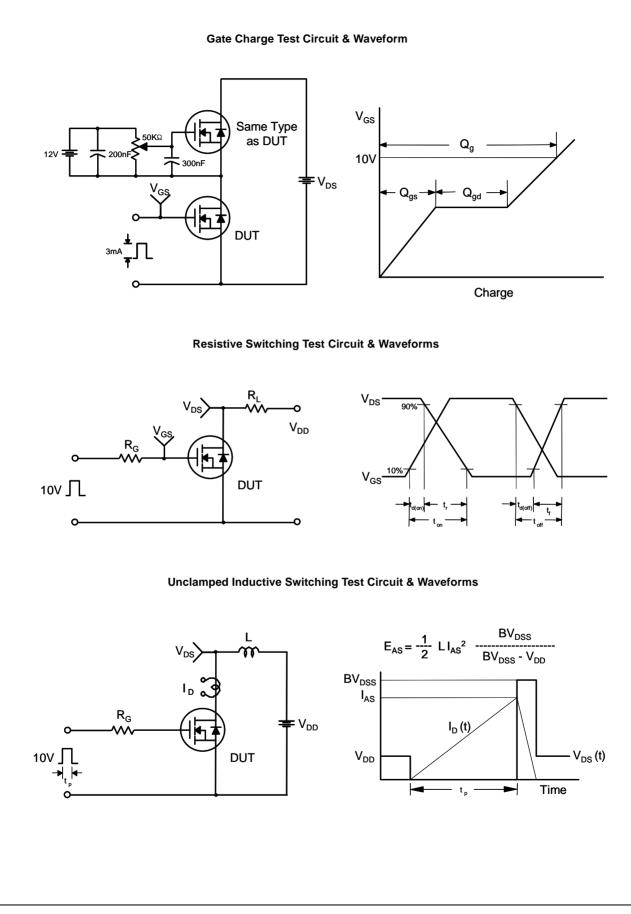
Electrical Characteristics T_c = 25°C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
Off Charac	teristics				L	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250 \mu A$	200			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient $I_D = 250 \mu A$, Referenced to $25^{\circ}C$			0.2		V/°C
I _{DSS}	Zero Gate Voltage Drain Current $V_{DS} = 200V, V_{GS} = 0V$ $V_{DS} = 160V, T_C = 125^{\circ}C$				1 10	μΑ μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30V, V_{DS} = 0V$			-100	nA
On Charac	teristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10V, I _D = 26A		0.041	0.049	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 40V, I_D = 26A$ (Note 4)		35		S
Dynamic C	haracteristics					•
C _{iss}	Input Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$		2230	2900	pF
C _{oss}	Output Capacitance	f = 1.0MHz		540	700	pF
C _{rss}	Reverse Transfer Capacitance			66	100	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 100V, I _D = 52A		53	115	ns
t _r	Turn-On Rise Time	$R_{G} = 25\Omega$		175	359	ns
t _{d(off)}	Turn-Off Delay Time			48	107	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		29	68	ns
Qg	Total Gate Charge	V _{DS} = 160V, I _D = 52A		49	63	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10V		19		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		24		nC
-	rce Diode Characteristics and Maximur	n Ratings				•
I _S	Maximum Continuous Drain-Source Diode Forward Current				52	A
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				204	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0V, I _S = 52A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0V, I _S = 52A		162		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt =100A/μs (Note 4)		1.3		μC

NOTES:

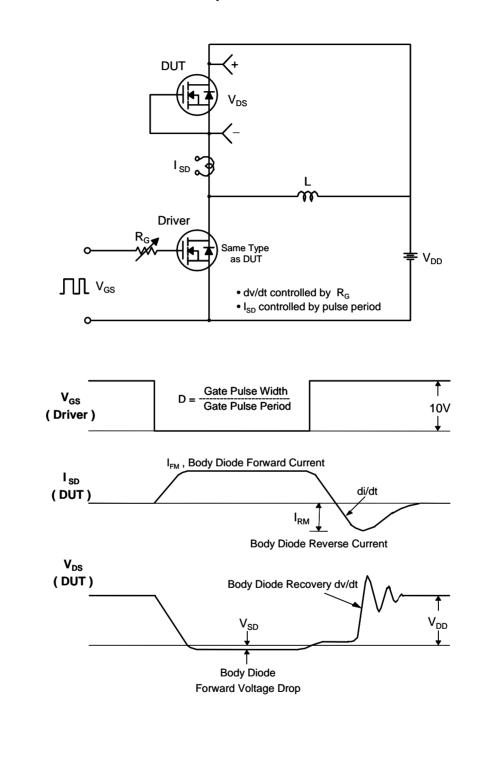
1. Repetitive Rating: Pulse width limited by maximum junction temperature

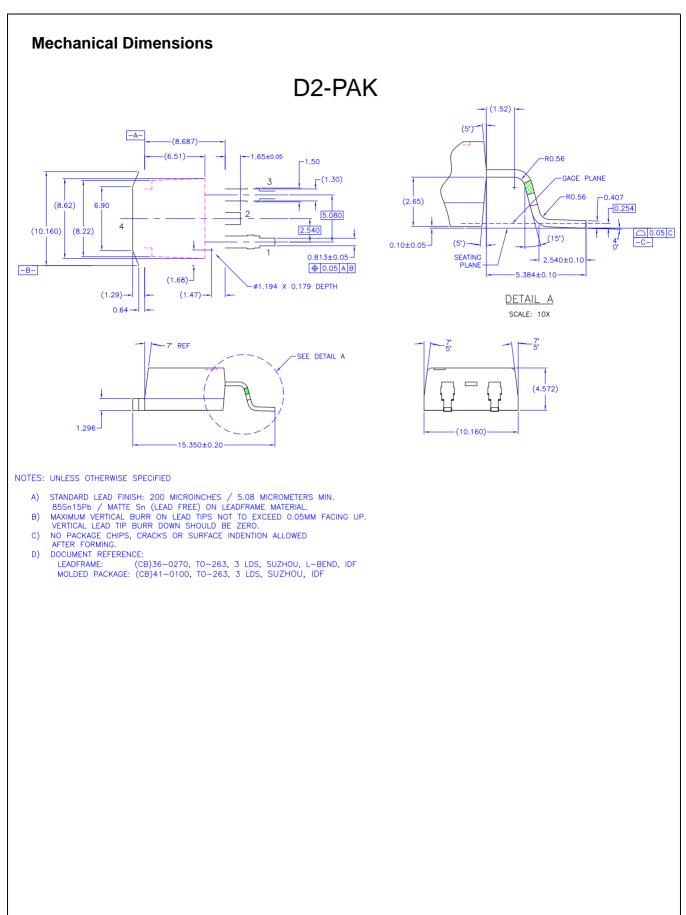

2. L = 1.4mH, I_{AS} = 52A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C


3. I_{SD} \leq 52A, di/dt \leq 200A/\mu s, V_{DD} \leq BV_{DSS}, Starting T_J = 25^{\circ}C

4. Pulse Test: Pulse width \leq 300µs, Duty Cycle \leq 2%

5. Essentially Independent of Operating Temperature Typical Characteristics


Typical Performance Characteristics Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics V_{gs} 15.0 V 10.0 V Тор 10² 10 8.0 V 7.0 V 6.5 V 6.0 V I_D, Drain Current [A] I_b, Drain Current [A] 5.5 10 150°C 10 -55°C 10 Notes 1. V_{DS} = 40V 2. 250µs Pulse Test 1. 250µs Pulse Tes 2. T_c = 25°C 10 10[°] 10-1 100 10¹ 10 2 12 V_{DS}, Drain-Source Voltage [V] V_{GS}, Gate-Source Voltage [V] Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage Drain Current and Gate Voltage Variation vs. Source Current and Temperatue 0.12 10 0.10 R_{DS(ON)} [Ω], Drain-Source On-Resistance Reverse Drain Current [A] 0.08 = 10V٧... 0.06 10 150°C 0.04 $V_{gs} = 20V$ 0.02 Notes : Ę, 1. V_{GS} = 0V 2. 250μs Pulse Test * Note : T, = 25°C 10⁰ ⊾ 0.2 0.00 ັດ 25 50 75 100 125 150 1.6 0.4 0.6 0.8 1.0 1.2 1.4 1.8 I_D, Drain Current [A] V_{sp}, Source-Drain voltage [V] **Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics** 12 6000 + C. $V_{DS} = 40V$ 10 5000 Gate-Source Voltage [V] V_{DS} = 100V V_{DS} = 160 8 4000 Capacitances [pF] 6 3000 2000 Note ; 1. V_{GS} = 0 V 2. f = 1 MHz $^{\sf SS'}$ 1000 2 * Note : I_D = 52A 0 0 10 10 10 20 30 40 50 60 V_{ps}, Drain-Source Voltage [V] Q_G, Total Gate Charge [nC]



FDB52N20 200V N-Channel MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now [™] CorePLUS [™] CorePOWER [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] EfficentMax [™] ECOSPARK [®] EfficentMax [™] EXWITCH [™] * T [™] T [™] T [™] T [™] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT [®] FAST [®] FastvCore [™] FastvCore [™] FastvCore [™] FastwCiref [®] *	FPSTM F-PFSTM FRFET® Global Power Resource SM Green FPSTM GTOTM IntelliMAXTM ISOPLANARTM MegaBuckTM MICROCOUPLERTM MicroFETTM MicroPakTM MillerDriveTM Motion-SPMTM OPTOLOGIC® OPTOPLANAR®	PDP SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QEET® QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW at a time™ SmartMax™ SMART START™ SMART START™ SMART START™ SUPERSOT™-S SuperSOT™-6 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SuperFMC™ SyncFET™ SuperSOT™-8 SuperMOS™ SyncFET™	The Power Franchise [®] The WET Franchise TinyBoost™ TinyBoost™ TinyLogic [®] TINYOPTO™ TinyPower™ TinyPower™ TinyWire™ Wire™ Utra FRFET™ UniFET™ VCX™ VisualMax™
--	--	---	---

* EZSWITCHTM and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Re