FSA3157B
 Low－Voltage SPDT Analog Switch or 2：1 Multiplexer／De－multiplexer Bus Switch

Features

－Useful in Both Analog and Digital Applications
－Ultra－small，MicroPak ${ }^{\text {TM }}$ Leadless Package
－Low On Resistance：$<10 \Omega$ Typical at $3.3 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$
－Broad V_{cc} Operating Range： 1.65 V to 5.5 V
－Rail－to－rail Signal Handling
－Power－down，High－impedance Control Input
－Over－voltage Tolerance of Control Input to 7．0V
－Break－before－make Enable Circuitry
－ 250 MHz ，3dB Bandwidth

Description

The FSA3157B is a high－performance，single－pole／ double－throw（SPDT）analog switch or 2：1 multiplexer／ de－multiplexer bus switch．

The device is fabricated with advanced sub－micron CMOS technology to achieve high－speed enable and disable times and low on resistance．The break－before－ make select circuitry prevents disruption of signals on the B Port due to both switches temporarily being enabled during select pin switching．The device is specified to operate over the 1.65 to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{cc}}$ operating range．The control input tolerates voltages up to 5.5 V ， independent of the V_{cc} operating range．

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FSA3157BL6X	-40 to $+85^{\circ} \mathrm{C}$	7 G	6－Lead，MicroPak 1．0mm Wide Package	5000 Units on Tape and Reel

All packages are lead free per JEDEC：J－STD－020B standard．
MicroPak ${ }^{\text {TM }}$ is a trademark of Fairchild Semiconductor Corporation．

Figure 1．Logic Symbol

Figure 2．Analog Symbol

Pin Configuration

Figure 3. Pad Assignments

Function Table

Input (S)	Function
Logic Level LOW	B_{0} Connected to A
Logic Level HIGH	B_{1} Connected to A

Pin Descriptions

Pin	Description
$\mathrm{A}, \mathrm{B}_{0}, \mathrm{~B}_{1}$	Data Ports
S	Control Input

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	7.0	V
$\mathrm{~V}_{\mathrm{S}}$	DC Switch Voltage ${ }^{(1)}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage $^{(1)}$	-0.5	7.0	V
I_{IK}	DC Input Diode Current at $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	-50		mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current		128	mA
$\mathrm{I}_{\mathrm{CCIIND}}$	DC V_{CC} or Ground Current		± 100	mA
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
T_{L}	Junction Lead Temperature (Soldering, 10 seconds)		+260	${ }^{\circ} \mathrm{C}$
P_{D}	Power Dissipation at $+85^{\circ} \mathrm{C}$		180	mW
ESD	Human Body Model, JESD22-A114		4	kV

Note:

1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V_{cc}	Supply Voltage Operating		1.65	5.50	V
$\mathrm{V}_{\text {IN }}$	Control Input Voltage ${ }^{(2)}$		0	V_{Cc}	V
V IN	Switch Input Voltage ${ }^{(2)}$		0	V_{cc}	V
Vout	Output Voltage ${ }^{(2)}$		0	$V_{\text {cc }}$	V
$\mathrm{T}_{\text {A }}$	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	Control Input $\mathrm{V}_{\mathrm{cc}}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$	0	10	ns / V
		Control Input $\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}-5.5 \mathrm{~V}$	0	5	

Note:
2. Control input must be held HIGH or LOW; it must not float.

Electrical Characteristics

Symbol	Parameter	Conditions	V cc (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Units
				Min.	Typ.	Max.	Min.	Max.	
V_{H}	High Level Input Voltage		$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$	0.75 V cc			$0.75 \mathrm{~V}_{\mathrm{cc}}$		V
			$\begin{gathered} \hline 2.3 \text { to } \\ 5.5 \end{gathered}$	$0.7 \mathrm{~V}_{\mathrm{cc}}$			$0.7 \mathrm{~V}_{\mathrm{cc}}$		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		$\begin{gathered} 1.65 \text { to } \\ 1.95 \\ \hline \end{gathered}$			0.25 V cc		0.25 V cc	V
			$\begin{gathered} 2.3 \text { to } \\ 5.5 \end{gathered}$			$0.3 \mathrm{~V}_{\mathrm{cc}}$		0.3 V cc	
I_{N}	Input Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$	0 to 5.5		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
loff	Off State Leakage Current	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{cc}}$	$\begin{gathered} 1.65 \text { to } \\ 5.5 \end{gathered}$		± 0.05	± 0.1		± 1	$\mu \mathrm{A}$
Ron	Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}}$	4.5		3.0	7.0		7.0	Ω
		$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{0}=-30 \mathrm{~mA}$			5.0	12.0		12.0	
		$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-30 \mathrm{~mA}$			7.0	15.0		15.0	
		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$	3.0		4.0	9.0		9.0	
		$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$			10.0	20.0		20.0	
		$\mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}$	2.3		5.0	12.0		12.0	
		$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-8 \mathrm{~mA}$			13.0	30.0		30.0	
		$\mathrm{V}_{1 \mathrm{I}}=0 \mathrm{~V}, \mathrm{I}_{0}=4 \mathrm{~mA}$	1.65		6.5	20.0		20.0	
		$\mathrm{V}_{\mathrm{IN}}=1.65 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}$			17.0	50.0		50.0	
Icc	Quiescent Supply Current: All Channels On or Off	$\begin{aligned} & V_{\operatorname{IN}}=V_{c c} \text { or } \\ & \text { GND I } \begin{array}{l} \text { OUT } \end{array}=0 \end{aligned}$	5.5			1.0		10.0	$\mu \mathrm{A}$
	Analog Signal Range		V cc	0		V_{cc}	0	V_{cc}	V
R Range	On Resistance Over Signal Range ${ }^{(3,7)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	4.5					25.0	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0					50.0	
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \\ & 0 \leq \mathrm{VBn} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.3					100.0	
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.65					300	
$\Delta \mathrm{R}_{\text {on }}$	On Resistance Match Between Channels ${ }^{(3,4)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=3.15$	4.5		0.15				Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}} 2.1$	3.0		0.2				
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.6$	2.3		0.5				
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Bn}}=1.15$	1.65		0.50				
Rflat	On Resistance Flatness ${ }^{(3,4,6)}$	$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	5.0		6.0				Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	3.0		12.0				
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	2.5		28.0				
		$\begin{aligned} & \mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \\ & 0 \leq \mathrm{V}_{\mathrm{Bn}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$	1.8		125				

Notes:
3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B Ports)
4. Parameter is characterized, but not tested in production.
5. Δ RON $_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum- Ron minimum measured at identical V_{Cc}, temperature, and voltage levels.
6. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
7. Guaranteed by design.

AC Electrical Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Units	Figure
				Min.	Typ.	Max.	Min.	Max.		
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PLH }}$	Propagation Delay Bus-to-bus ${ }^{(8)}$	$\mathrm{V}_{1}=\mathrm{OPEN}$	$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$			3.5		3.5	ns	Figure 10 Figure 11
			2.3 to 2.7			1.2		1.2		
			3.0 to 3.6			0.8		0.8		
			4.5 to 5.5			0.3		0.3		
tpzl, tpzH	Output Enable Time Turn on Time (A to B_{n})	$\begin{aligned} & V_{1}=2 \times V_{\text {cc }} \text { for } \\ & t_{\text {pzL }} V_{1}=0 \mathrm{~V} \text { for } \\ & t_{\text {tpzH }} \end{aligned}$	$\begin{gathered} 1.65 \text { to } \\ 1.95 \\ \hline \end{gathered}$	7.0		23.0		24.0	ns	Figure 10 Figure 11
			2.3 to 2.7	3.5		13.0		14.0		
			3.0 to 3.6	2.5		6.9		7.6		
			4.5 to 5.5	1.7		5.2		5.7		
tpLz, tPHz	Output Disable Time Turn off Time (A Port to B Port)	$\mathrm{V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{cc}}$ for $\mathrm{t}_{\text {pLz }} \mathrm{V}_{1}=0 \mathrm{~V}$ for tphz1.	$\begin{gathered} 1.65 \text { to } \\ 1.95 \\ \hline \end{gathered}$	3.0		12.5		13.0	ns	Figure 10 Figure 11
			2.3 to 2.7	2.0		7.0		7.5		
			3.0 to 3.6	1.5		5.0		5.3		
			4.5 to 5.5	0.8		3.5		3.8		
$\mathrm{t}_{\text {Bbм }}$	Break-before-Make Time ${ }^{(9)}$		$\begin{gathered} 1.65 \text { to } \\ 1.95 \end{gathered}$	0.5			0.5		ns	Figure 12
			2.3 to 2.7	0.5			0.5			
			3.0 to 3.6	0.5			0.5			
			4.5 to 5.5	0.5			0.5			
Q	Charge Injection ${ }^{(9)}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{aligned}$	5.0		7.0				pC	Figure 13
		$\mathrm{R}_{\mathrm{GEN}}=0 \Omega$	3.3		3.0					
OIRR	Off Isolation ${ }^{(10)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	1.65 to 5.5		-57.0				dB	Figure 14
Xtalk	Crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	1.65 to 5.5		-54.0					Figure 15
BW	-3dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	1.65 to 5.5		250				dB	Figure 18
THD	Total Harmonic Distortion ${ }^{(9)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & 0.5 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{KHz} \end{aligned}$	5.000		. 011				\%	

Notes:

8. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
9. Guaranteed by design.
10. Off Isolation $=20 \log _{10}\left[V_{A} / V_{B n}\right]$.

Capacitance

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized, but not tested in production.

Symbol	Parameter	Conditions	Typ.	Max.	Units	Figure
C_{IN}	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	2.3		pF	
$\mathrm{C}_{\mathrm{IO}-\mathrm{B}}$	B Port Off Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6.5		pF	Figure 16
$\mathrm{C}_{\mathrm{IOA}-\mathrm{ON}}$	A Port Capacitance when Switch is Enabled	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	18.5		pF	Figure 17

Typical Performance Characteristics

Figure 4. Off Isolation, $\mathrm{V}_{\mathrm{cc}}-1.65 \mathrm{~V}$

Figure 6. Crosstalk, $\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$

Figure 8. Bandwidth, $\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$

Figure 5. Off Isolation, $\mathrm{V}_{\mathrm{cc}}-5.5 \mathrm{~V}$

Figure 7. Crosstalk, $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$

Figure 9. Bandwidth, $\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$

AC Loading and Waveforms

Notes:
Input driven by 50Ω source terminated in 50Ω C_{L} includes load and stray capacitance Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

Figure 10. AC Test Circuit

Figure 11. AC Waveforms

Figure 12. Break-before-make Interval Timing

AC Loading and Waveforms (Continued)

Figure 13. Charge Injection Test

Figure 14. Off Isolation

Figure 16. Channel Off Capacitance

Figure 18. Bandwidth

Physical Dimensions

Figure 19. 6-Lead, MircoPak ${ }^{\text {TM }}$ 1.0mm Wide Package
Note: click here for tape and reel specifcations, available at: http://www.fairchildsemi.com/products/logic/pdf/micropak tr.pdf

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

LIFE SUPPORT POLICY
 FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

