RENESAS

M62393P/FP

8-bit 8ch I²C BUS D/A Converter with Buffer Amplifiers

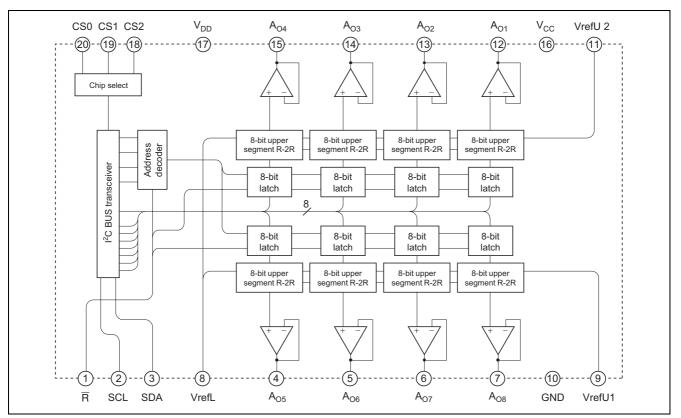
REJ03D0884-0300 Rev.3.00 Mar 25, 2008

Description

The M62393P/FP is an integrated circuit semiconductor of CMOS structure with 8 channels of built-in D/A converters with output buffer operational amplifiers. The input is 2-wires serial method is used for the transfer format of digital data to allow connection with a microcomputer with minimum wiring.

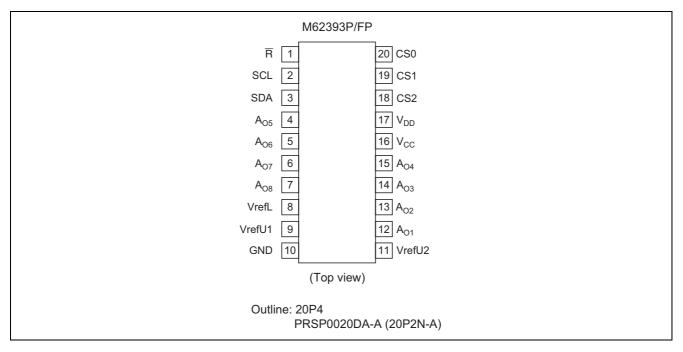
The output buffer operational amplifier employs AB class output circuit with sink and source drive capacity of 1.0 mA or more, and it operates in the whole voltage range from VrefU to ground. And because of connects maximum 8 pieces to 64 channels control.

Features


- Digital data transfer format: I²C BUS serial data method
- Output buffer operational amplifier It operates in the whole voltage range from VrefU (0 to 5 V) to ground.
- High output current drive capacity: ± 1.0 mA over
- Preparation two high level reference voltage terminal because there are two high level reference voltage terminal, it can set up two kinds differ voltage range.

Application

Conversion from digital control data to analog control data for home-use and industrial equipment.


Signal gain control or automatic adjustment of display-monitor or CTV.

Block Diagram

RENESAS

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
3	SDA	Serial data input terminal
1	R	Reset signal input terminal
2	SCL	Serial clock input terminal
12	Ao1	8-bit D/A converter output terminal
13	Ao2	
14	Ao3	
15	Ao4	
4	Ao5	
5	Ao6	
6	Ao7	
7	Ao8	
16	V _{cc}	Analog power supply terminal
17	V _{DD}	Digital power supply terminal
10	GND	Analog and digital common GND
8	VrefL	D/A converter low level reference voltage input terminal
9	VrefU1	D/A converter high level reference voltage input terminal 1
11	VrefU2	D/A converter high level reference voltage input terminal 2
18	CS2	Chip select data input terminal 2
19	CS1	Chip select data input terminal 1
20	CS0	Chip select data input terminal 0

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
Supply voltage	V _{DD}	-0.3 to +7.0	V
D/A converter high level reference voltage	VrefU1, 2	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{DD} + 0.3	V
Output voltage	Vo	-0.3 to V _{DD} + 0.3	V
Power dissipation	Pd	990 (P) / 590 (FP)	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

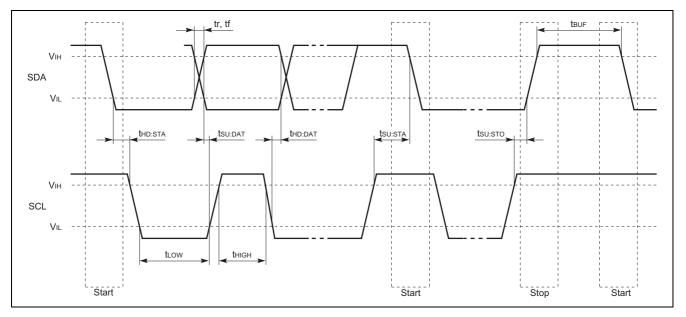
<Digital Part>

```
(V_{CC}, V_{DD}, VrefU1, 2 = +5 V \pm 10\%, V_{CC} \ge VrefU1, 2, GND = VrefL = 0 V, Ta = -20 to +85^{\circ}C, unless otherwise noted.)
```

		Limits				
ltem	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{DD}	4.5	5.0	5.5	V	
Supply current	I _{DD}	—	—	1.0	mA	CLK = 1 MHz operation,
						$I_{AO} = 0 \ \mu A$
Output low voltage (SDA)	V _{OL}		—	0.4	V	lsink = 3 mA
Input leak current	I _{ILK}	-10	—	10	μΑ	$V_{IN} = 0$ to V_{CC}
Input low voltage	VIL		—	$0.2 V_{CC}$	V	
Input high voltage	VIH	0.8 V _{CC}	_		V	

<Analog Part>

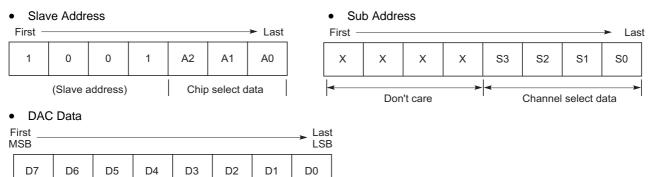
 $(V_{CC}, V_{DD}, VrefU1, 2 = +5 V \pm 10\%, V_{CC} \ge VrefU1, 2, GND = VrefL = 0 V, Ta = -20 to +85^{\circ}C, unless otherwise noted.)$


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{CC}	4.5	5.0	5.5	V	
Supply current	I _{CC}	-	1.6	3.2	mA	CLK = 1 MHz operation, $I_{AO} = 0 \ \mu A$
D/A converter high level	IrefU	-	1.0	2.0	mA	VrefU = 5 V, VrefL = 0 V
reference voltage input						Data condition: at maximum current
current						
D/A converter high level	VrefU	3.5	—	V _{cc}	V	The output dose not necessarily be
reference voltage range						the values within the reference
D/A converter low level	VrefL	GND	—	$V_{CC} - 3.5$	V	voltage setting range.
reference voltage range						
Buffer amplifier output	V _{AO}	0.1	—	V _{CC} – 0.1	V	$I_{AO} = \pm 100 \ \mu A$
voltage range		0.2	_	$V_{CC}-0.2$	V	$I_{AO} = \pm 500 \ \mu A$
Buffer amplifier output	I _{AO}	-1.0	—	1.0	mA	Upper side saturation voltage = 0.3 V
current range						Lower side saturation voltage = 0.2 V
Differential nonlinearity	S _{DL}	-1.0	—	1.0	LSB	VrefU = 4.79 V
Nonlinearity	SL	-1.5	_	1.5	LSB	VrefL = 0.95 V
Zero code error	SZERO	-2.0	_	2.0	LSB	$V_{CC} = 5.5 \text{ V} (15 \text{ mV/LSB})$
Full scale error	S _{FULL}	-2.0	—	2.0	LSB	Without load $(I_{AO} = 0)$
Output capacitive load	Co	-	—	0.1	μF	
Buffer amplifier output	Ro	—	5.0	—	Ω	
impedance						

I²C BUS Line Characteristics

		Norma	I Mode	High Spe	ed Mode	
Item	Symbol	Min	Max	Min	Max	Unit
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	4.7	—	1.3	—	μs
Hold time start condition. After this period. The first clock pulse is generated.	t _{HD : STA}	4.0	_	0.6	_	μs
Low period of the clock	t _{LOW}	4.7	_	1.3	_	μS
High period of the clock	t _{HIGH}	4.0	—	0.6	—	μs
Setup time for start condition (only relevant for a repeated start condition)	t _{SU : STA}	4.7	—	4.7	—	μs
Hold time data	t _{HD : DAT}	0	—	0	0.9	μs
Setup time data	t _{SU : DAT}	250	—	100	—	ns
Rise time of both SDA and SCL lines	t _R	_	1000	20	300	ns
Fall time of both SDA and SCL lines	t _F	_	300	20	300	ns
Setup time for stop condition	t _{SU:STO}	4.0	_	0.6	_	μS

Note: Transmitter must internally at reset a hold time to bridge the undefined region (300 ns Max) of the falling edge of SCL.


Timing Chart

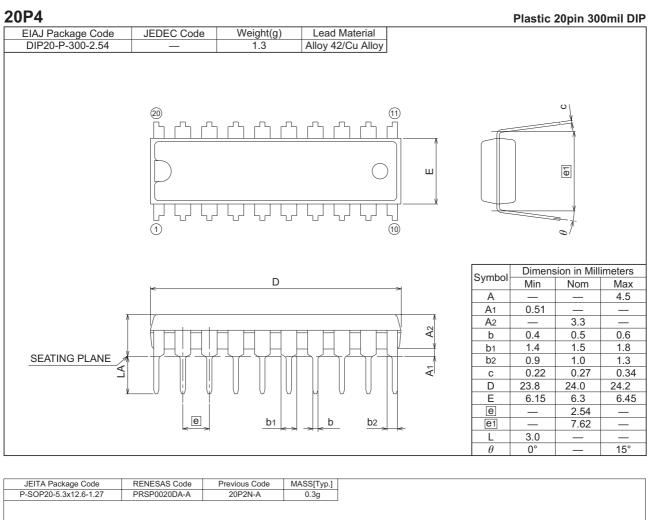
I²C BUS Format

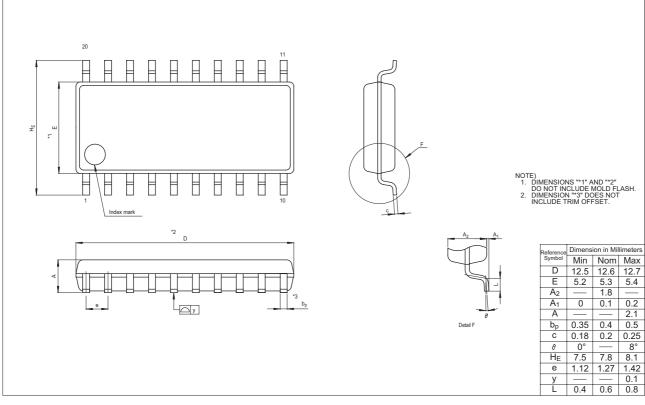
STA Slave address W A	Sub address A	A DAC data	А	STP

Digital Data Format

(1) Chip Select Data

MSB		LSB	LSB					
A2	A1	A0	CS2	CS1	CS0			
0	0	0	0	0	0			
0	0	1	0	0	1			
0	1	0	0	1	0			
:	:	:	:	:	:			
1	1	1	1	1	1			


(2) Channel Select Data


MSB			LSB	
S3	S2	S1	S0	Channel Selection
0	0	0	0	Don't care
0	0	0	1	ch1 selection
0	0	1	0	ch2 selection
:	:	:	:	:
0	1	1	1	ch7 selection
1	0	0	0	ch8 selection
1	0	0	1	Don't care
:	:	:	:	:
1	1	1	1	Don't care

(3) DAC Data

First MSB							→ Last LSB	
D7	D6	D5	D4	D3	D2	D1	D0	DAC Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
0	0	0	0	0	0	0	1	(VrefU – VrefL) / 256 \times 2 + VrefL
0	0	0	0	0	0	1	0	(VrefU – VrefL) / 256 \times 3 + VrefL
0	0	0	0	0	0	1	1	(VrefU – VrefL) / 256 \times 4 + VrefL
:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	0	(VrefU – VrefL) / 256 \times 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

Package Dimensions

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set exception of protein ting from the internation included in this document. Dut Renesas asproaces are not exception of protein ting from the protein ting from the internation included in this document.
 When using or otherwise requires the failue or mating inclusion incurred and this document. Dut Renesas asproaces are area consulting what how any particular in the date this document.
 When using or otherwise requires the failue or mating inclusion in the set of the state of the total system before deciding about the applicability of otherwise in systems the failue or mating inclusion in the indication. Renesas products are not designed phase to the set of any parti

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com