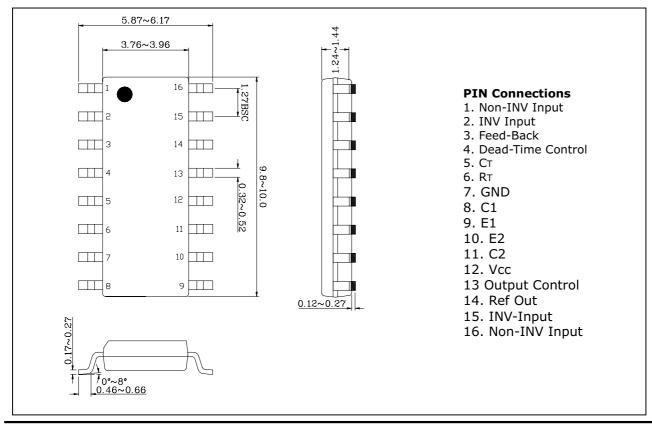
Suntac ELECTRONIC CORP

STC494 Pulse Width Modulation

Description

The STC494 is a monolithic integrated circuit which includes all the necessary building blocks for the design of pulse width modulate(PWM) switching power supplies, including push-pull, bridge and series configuration. The device can operate at switching frequencies between 1KHz and 300KHz and output voltage up to 40V. The STC494 is specified over an operating temperature range of -40°C to 85°C .


Features

- Uncommitted output transistors capable of 200mA source or sink
- Internal protection from double pulsing of out-puts with narrow pulse widths or with supply voltages bellows specified limits
- Easily synchronized to other circuits
- Dead time control comparator
- Output control selects single-ended or push-pull operation

Ordering Information

Type NO.	Marking	Package Code	
STC494	STC494	SOP-16	

Outline Dimensions

unit : mm

Absolute Maximum Ratings			Ta=25° C
Characteristic	Symbol	Ratings	Unit
supply voltage	V _{cc}	42	V
Voltage From Any Pin to Ground (except pin 8 and pin 11)	V _{IN}	V _{CC} +0.3	V
Output Collector Voltage	V _{C1} , V _{C2}	42	V
Peak Collector Current	I _{C1} , I _{C2}	250	mA
Power Dissipation	P _D	1500	mW
Operating Temperature	T _{opr}	-40 ~ 85	°C
Storage Temperature	T _{stg}	-65 ~ 150	°C

Recommended Operating Condition

Characteristic	Symbol	Min.	Max.	Unit
supply voltage	V _{cc}	7	40	V
Voltage on Any Pin Except Pin 8 and 11(Referenced to Ground)	V _{IN}	-0.3	V _{cc} +0.3	V
Output Voltage	V _{C1} , V _{C2}	-0.3	40	V
Output Collector Current	I _{C1} , I _{C2}	-	200	mA
Timing Capacitor	Ct	470	-	PF
Timing Capacitor	Ct	-	10	μF
Timing Resistor	R _t	1.8	500	kΩ
Oscillator Frequency	f _{osc}	1	300	KHz

Electrical Characteristics Reference Section

			-			
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Reference Voltage	Vref	Iref = 1.0mA	4.75	5.00	5.25	V
Line Regulation	V _{LINE}	7V < Vcc < 40V	-	2	25	mV
Load Regulation	V _{LOAD}	$1mA < I_{REF} < 10mA$	-	1	15	mV
Temperature Coefficient	-	0°C < Ta <70°C	-	0.01	0.03	%/°C

Oscillator Section

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Oscillator Frequency	f _{osc}	$C_t=0.01 \ \mu F$, $R_t=12 \ k\Omega$	-	10	-	kHz
Oscillator Frequency Change Over Operating Temperature Range	Δf_{SOC}	$C_t=0.01 \ \mu\text{F}$, $R_t=12 \ \text{k}\Omega$	-	-	2	%

Dead Time Control Section

Character	istic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Bias Current (I	Pin4)	$I_{IB(DT)}$	$Vcc = 15V, 0V < V_4 < 5.25V$	-	-2	-10	μA
Max. Duty cycle, Eac	h Output	DC _(Max)	Vcc = 15V, Pin4 = 0V, Output Control Pin = Vref	43	-	45	%
Voltage	Zero Duty	V	_	-	3	3.3	v
	Max Duty	V _{TH}		0	-	-	

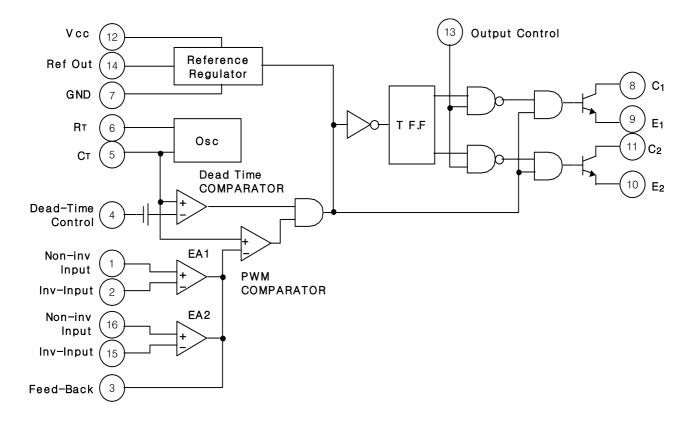
Error Amplifier Section

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{IOS}	V ₃ = 2.5V	-	2	10	mV
Input Offset Current	I _{IOS}	V ₃ = 2.5V	-	25	250	nA
Input Bias Current	I _{IB}	V ₃ = 2.5V	-	0.2	1	μA
Input Common Mode voltage Range	V_{ICR}	$7V \le V_{CC} \le 40V$	-0.3	-	V _{cc}	V
Large Signal Open Loop Voltage Range	G _{vo}	$0.5V \leq V_3 \ \leq 3.5V$	60	74	-	dB
Unity Gain Band width	f _C	-	-	650	-	kHz

PWM Comparator Section (Pin3)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Inhibit Threshold Voltage	V_{THI}	Zero duty cycle	-	4	4.5	V
Output Source Current	Io ⁺	0.5V < V ₃ < 3.5V	2	-	-	mA
Output Sink Current	Io⁻	0.5V< V ₃ < 3.5V	-0.2	-0.6	-	mA

Output Section

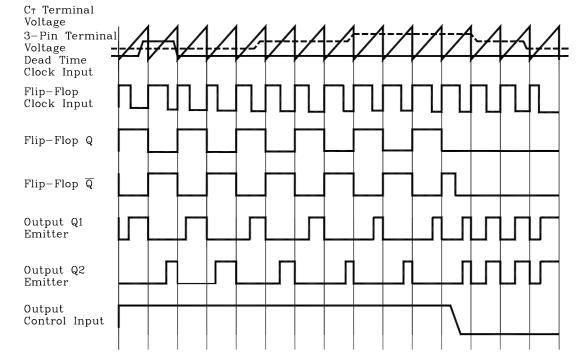

Chara	acteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output Satur-	Common-Emitter	V	V_{E} = 15V, I_{C} = 200mA	-	1.1	1.3	v
ation Voltage	Emitter-Follower	V _{CE(SAT)}	$V_{C} = 15V, I_{E} = 200mA$	-	1.5	2.5	v
Collector off-sta	ate Current	$I_{C(off)}$	$V_{CC} = V_{C} = 40V, V_{E} = 0$	-	2	100	μA
Emitter off-stat	e Current	$I_{E(off)}$	$V_{CC} = V_{C} = 40V, V_{E} = 0$	-	-	-100	μΑ
Output Control(Pin 13)							
Output Control Required for si Parallel Output	ingle-Ended or	V _{OCL}	-	-	-	0.4	V
Output Control uired for Push-p	5	V _{OCH}	-	2.4	-	-	V
Total Device							
Standby power Current	Supply	I _{CC}	-	-	6	10	mA

: These limits apply when the voltage measured at Pin 3 is with in the range specified.

Output AC Characteristic

Chara	acteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Rise Time	Common Emitter	÷		-	100	200	
Rise Time	Emitter Follower	۲	-	-	100	200	nc
Fall Time	Common Emitter			-	25	100	ns
	Emitter Follower	t _f	-	-	40	100	

Block Diagram



INFORMATION

The basic oscillator(switching)frequency is controlled by an external resistor (Rt) and capacitor(Ct). The relationship between the values of Rt Ct and frequency is shown in.

The level of the sawtooth wave form is compared with an error voltage by the pulse width modulated comparator. The output of the PWM Comparator directs the pulse steering flip flop and the output control logic.

The error voltage is generated by the error amplifier. The error amplifier boosts the voltage difference between the output and the 5V internal reference. See Figure7 for error amp sensing techniques. The second error amp is typically used to implement current limiting. The output control logic (Pin13) selects either push-pull or single-ended operation of the output transistors (see Figure6). The dead time control prevents on-state overlap of the output transistors as can be seen is Figure5. The dead time is approximately 3 to 5% of the total period if the dead time control(pin4) is grounded. This dead time can be increased by connecting the dead time control to a voltage up to 5 V. The frequency response of the error amps can be modified by using external resistors and capacitors. These components are typically connected between the compensation terminal (pin3) and the inverting input of the error amps(pin2 or pin15). The switching frequency of two or more S494 circuits can be synchronized. The timing capacitor, Ct is connected as shown in Figure8. Charging current is provided by the master circuit. Discharging is through all the circuits slaved to the master. Rt is required only for the master circuit.

Operating Waveform

Test Circuit

Fig.1Error Amplifier Test Circuit

Fig.2 Current Limit sense Amplifier Test Circuit

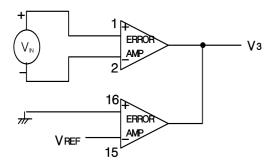
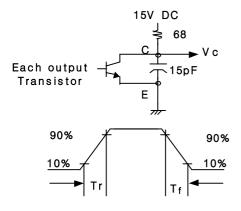
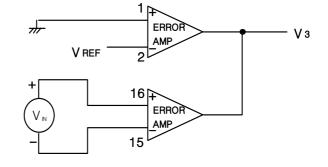
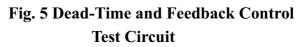
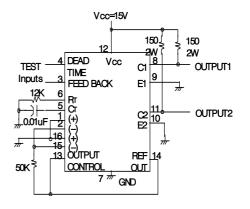






Fig. 3 Common-Emitter Configuration Test circuit and Waveform

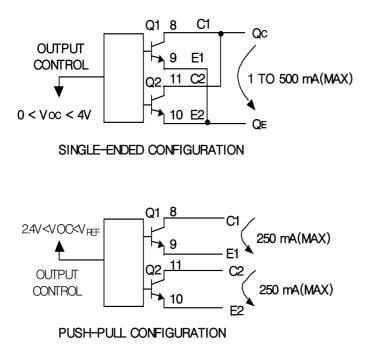
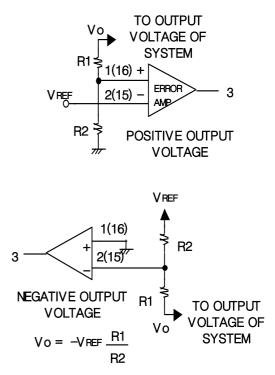


Fig. 4 Emitter-Follower Configuration Test circuit and waveform Voltage waveform



APPLICATION CIRCUIT

Fig. 6 Output Connections for Single-Ended and Push-Pull Configurations

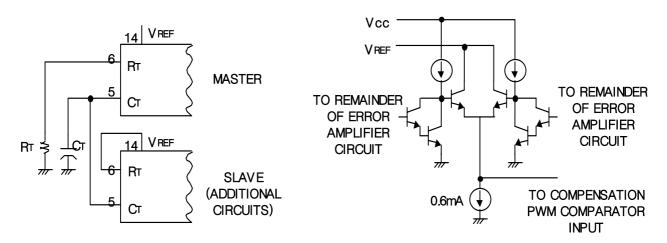
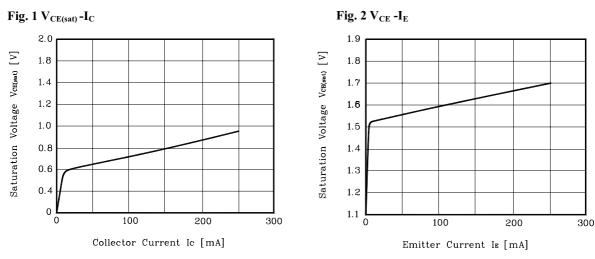
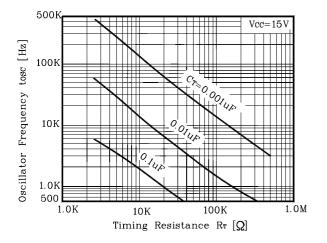
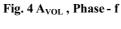
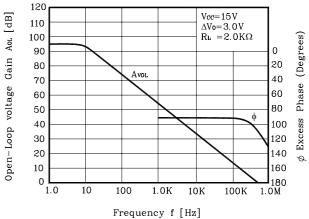


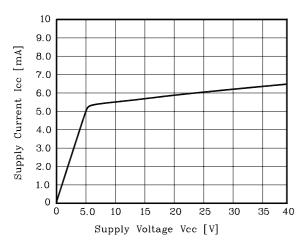
Fig. 7 Error Amplifier Sensing Techniques

Fig. 8 Slaving Tow or More Control Circuits

Fig. 9Error Amplifier and Current Limit Sense Amplifier Output Circuits

Electrical Characteristic Curves


Fig. 3 tosc - R_T

