M62303FP

High Precision Double Integration Type A/D Converter
REJ03D0862-0201
Rev.2.01
Dec 27, 2007

Description

M62303FP is a double integration type A / D converter support system, and is a semiconductor integrated circuit which can work as A/D converter of 14 bits or more by being used with MCU and by inputting SI, SCK1, CS, and CONTIN.

High precision A/D translation system can be realized without using high precision external parts by proofreading A/D acquired values with two or more known conversion values such as reference voltage, grounding (zero) voltage and so forth.

Features

- High precision (14 bits or more) double integration type A/D converter
- Positive/negative constant voltage source built-in (+6.3 V, -6.0 V Typ)
- Positive/negative constant current source built-in (Isource $=2 \mathrm{~mA}$, Isink $=0.2 \mathrm{~mA} \mathrm{Max}$)
- Independent 2 ch operational amplifier built-in
- System reset built-in (4.5 V Typ)

Application

High precision control systems, such as temperature control and speed control

Block Diagram

Pin Arrangement

M62303FP

Outline: PRQP0064JA-A (64P6S-A)

Pin Description

Pin No.	Pin Name	Function
56	SI	Serial data input terminal. Serial data of 15 bits data length is input.
55	SCK1	Shift clock input terminal. Signal from SI terminal is input into 15-bit shift register at the rise of a clock.
54	CS	"L" level of this terminal enables shift clock, and "H" level makes shift register contents stored into multiplexer control register (analog switches) and unenables clock input.
52	CONT IN	\rightarrowA pulse is input. Double integration type A/D converter is started synchronizing with this pulse. Moreover, the optimal full scale can be set up by setting up with C and R so that it may be set to TCONT ≤ 2.14 CR.
57	VDD	Digital part power supply terminal
51	GD	Digital part GND terminal. This terminal is externally connected to analog ground terminal when IC is operative.
50	RESET OUT	Output terminal of reset circuit supervising the fall of a digital part power supply.
49	DERAY	Reset output rise is delayed by adding capacitor.
$\begin{aligned} & 60,61,62,63, \\ & 64,1,2,3 \end{aligned}$	MUX1 to 8	Input side terminal of multiplexer (analog switch group) MUX.
4	MUXCOM	Output side COMMON terminal of multiplexer MUX.
5, 6, 7, 8, 9	AS1-1 to 5	Input side terminal of multiplexer (analog switch group) AS1.
10	AS1COM	Output side COMMON terminal of multiplexer AS1.
$\begin{aligned} & \hline 11,12,13,14, \\ & 15 \end{aligned}$	AS2-1 to 5	Input side terminal of multiplexer (analog switch group) AS2
16	AS2COM	Output side COMMON terminal of multiplexer AS2
17, 18	AS3-1 to 2	Source type constant current source output terminal
19, 20	AS4-1 to 2	Sink type constant current source output terminal
21	AS5	Analog switch AS5 input side terminal
22	AS5COM	Analog switch AS5 output side terminal
23, 59	VC+	Positive power supply output terminal for analog switch drive
24,58	VC-	Negative power supply output terminal for analog switch drive
25	GA	Analog part GND terminal
$\begin{aligned} & 26,27, \\ & 28,29 \end{aligned}$	$\begin{aligned} & \text { R5, R3, } \\ & \text { R2L, R2H } \end{aligned}$	Reference current setting terminal for constant current source
30	R1	Source type output current setting terminal for constant current source
31	R4	Sink type output current setting terminal for constant current source
32	VA+	Analog part positive power supply terminal
33	VA-	Analog part negative power supply terminal
34	OP1+	Operational amplifier 1 non-inverting input terminal
35	OP1-	Operational amplifier 1 inverting input terminal
36	OUT1	Operational amplifier 1 output terminal
37	OUT2	Operational amplifier 2 output terminal
38	OP2-	Operational amplifier 2 inverting input terminal
39	OP2+	Operational amplifier 2 non-inverting input terminal
40	VREF	Standard voltage input for standard integration, and constant standard voltage input terminal for source current source setup
41	ADIN	A/D conversion input terminal. Analog signal into ADIN terminal is converted into pulse width proportional to the input voltage.
42	BUFFER	Output terminal of buffer amplifier which receives VREF, ADIN, and GA input. Internal analog switch for A/D conversion is switched by the CONTIN signal, and the voltage of three types of VREF, ADIN, and GA is output to BUFFER terminal through buffer amplifier.
43, 45	GA	Analog part GND terminal
44	INTIN	Input terminal of integration amplifier
46	INTOUT	Output terminal of integration amplifier
47	COMPIN	Input terminal of the comparator part of a double integration type A/D converter
48	VADR	Power supply output terminal used for reference terminal of comparator
53	PULSEOUT	A/D translation output terminal. Input analog signal is changed into pulse to be output.

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Ratings	Unit	Conditions
Analog power supply voltage	VA+ VA-	22	V	
Switch part power supply voltage	Vc+ Vc-	13.2	V	
Digital section supply voltage	$V_{D D}$	-0.3 to +7	V	
A/D converter analog input voltage	$\mathrm{V}_{\text {AIN }}$	-4 to +4	V	
PULSE OUT output current	Isink (PO)	10	mA	
Reset output current	Isink (RE)	10	mA	
Switch input voltage	$\mathrm{V}_{\text {swin }}$	Vc- to Vc+	V	
		VA- to VA+ ${ }^{* 1}$		At the line of fault voltage impression
Switch input current	$\mathrm{I}_{\text {SWIN }}$	$\pm 20^{* 1}$	mA	(Per one pin)
		$\pm 100^{* 1}$		(All the switch sum totals)
Digital input voltage	$\mathrm{V}_{\text {DIN }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V	
Power dissipation	Pd	740	mW	
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$	

Note: 1. Represents the protection level at the time of abnormalities.

Operating Conditions

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Block	Item	Symbol	Min	Typ	Max	Unit	Test Conditions
$\begin{aligned} & \text { ס } \\ & \frac{0}{\mathbb{0}} \\ & \frac{7}{4} \end{aligned}$	Power supply voltage (positive side)	VA+	+8.1	+12	+13	V	
	Power supply voltage (negative side)	VA-	-9	-8	-7.2	V	
	Power supply current (positive side)	IA+	-	13	17	mA	
	Power supply current (negative side)	IA-	-	12	17	mA	
	A/D converter analog standard voltage	$\mathrm{V}_{\text {REF }}$	1.0	2.5	3.0	V	
	A/D converter analog input voltage	$\mathrm{V}_{\text {AIN }}$	$-\mathrm{V}_{\text {REF }}$	-	$\mathrm{V}_{\text {REF }}$	V	
	Switch input voltage	$\mathrm{V}_{\text {SwIN }}$	-6	-	+6	V	
	Input integration time	$\mathrm{T}_{\text {CONT }}$	2	-	20	ms	
$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \end{aligned}$	Power supply voltage	V ${ }_{\text {d }}$	$4.80{ }^{\text {² }}$	5.0	5.5	V	
	Power supply current	I_{DD}	-	1.8	3	mA	
	High-level input voltage	$\mathrm{V}_{\text {IN }}$	2.4	-	-	V	
	Low-level input voltage	VIL	-	-	0.8	V	
	Serial clock waiting time	$\mathrm{t}_{\text {scsk }}$	250	-	-	ns	CS $\downarrow \rightarrow$ SCKI \downarrow
	Serial input setup time	$\mathrm{t}_{\text {SIK }}$	100	-	-	ns	SI \rightarrow SCKI \uparrow
	Serial input hold time	$\mathrm{t}_{\mathrm{HKI}}$	50	-	-	ns	SCKI $\uparrow \rightarrow$ SI
	Serial clock low level time	twLK	200	-	-	ns	
	Serial clock high level time	twhk	200	-	-	ns	
	Chip selection hold time	tнксs	50	-	-	ns	SCKI $\uparrow \rightarrow$ CS \uparrow
	Integration capacitance	$\mathrm{C}_{\mathrm{INT}{ }^{* 3}}$	-	0.015	-	$\mu \mathrm{F}$	
	Voltage current conversion resistor	RINT	56	230	500	$\mathrm{k} \Omega$	

Notes: 2. Represents the reset release voltage.
3. Set up as in $2.14 \mathrm{R}_{\text {Int }}-\mathrm{C}_{\text {Int }} \mathrm{T}_{\text {cont }}$.

Electrical Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)
$\mathrm{VA}+=12 \mathrm{~V}, \mathrm{VA}-=-\mathrm{SV}, \mathrm{V}_{\mathrm{REF}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{CONT}}=7.3 \mathrm{~ms}$

Block	Item	Symbol	Min	Typ	Max	Unit	Test Conditions	
	Analog input current	1	-	20	80	nA		
	Resolution	ER	14	-	-	Bit		
	Linearity error ${ }^{\text {* }}$	N, L	-	0.012	-	\%FS		
	Conversion range of fluctuation ${ }^{*}{ }^{2}$	-	-	0.006	-	\%FS		
	Conversion time	Tc	-	8.28	-	ms	$\begin{aligned} & \mathrm{C}_{\mathrm{INT}}=0.015 \mu \mathrm{~F} \\ & \mathrm{R}_{\mathbb{N T} T}=230 \mathrm{k} \Omega \end{aligned}$	$\mathrm{V}_{\text {AIN }}=2.5 \mathrm{~V}$
			-	15.58	-			$\mathrm{V}_{\text {AII }}=0 \mathrm{~V}$
			-	22.88	-			$\mathrm{V}_{\text {AIN }}=-2.5 \mathrm{~V}$
	Saturation voltage	Vpo (sat)	-	-	0.4	V	Isink (PO) $=6 \mathrm{~mA}$	
$\begin{aligned} & \text { 글 } \\ & \stackrel{3}{3} \\ & \omega \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	Conversion standard voltage	$\mathrm{V}_{\text {ADR }}$	-6.3	-6.0	-5.7	V		
	Output voltage for switch part power supplies	Vc+	+6.0	+6.3	+6.6	V		
	Output voltage for switch part power supplies	Vc-	-6.6	-6.3	-6.6	V		
	Input voltage fluctuation		-	-	100	mV	$\text { VA+: } 8.1 \text { to } 13 \mathrm{~V}, \mathrm{VA}-:-9 \text { to }-7.2 \mathrm{~V}$	
	ON resistance	Ron	-	100	200	Ω	$\begin{aligned} & -6 \mathrm{~V} \text { Vds } 6 \mathrm{~V} \\ & \mathrm{Id}=1 \mathrm{~mA} \end{aligned}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
			-	-	200			$\mathrm{Ta}=-40^{\circ} \mathrm{C}$
			-	-	300			$\mathrm{Ta}=85^{\circ} \mathrm{C}$
	RON match		-	10	30	\%		
	RON drift	$\Delta \mathrm{R}_{\mathrm{ON}} / \Delta \mathrm{T}$	-	0.5	-	\%/ ${ }^{\circ} \mathrm{C}$		
	Input off-leak current	$I_{\text {Soff }}$	-	± 0.1	± 100	nA	$\mathrm{Vd}=-6 \mathrm{~V}, \mathrm{Vs}=6 \mathrm{~V}$ and $\mathrm{Vs}=-6 \mathrm{~V}, \mathrm{Vd}=6 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=0^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=50^{\circ} \mathrm{C}$
	Output off-leak current	$\mathrm{I}_{\text {Doff }}$	-	± 0.1	± 100	nA	$\mathrm{Vd}=-6 \mathrm{~V}, \mathrm{Vs}=6 \mathrm{~V}$ and $\mathrm{Vs}=-6 \mathrm{~V}, \mathrm{Vd}=6 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=0^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=50^{\circ} \mathrm{C}$
	On-channel leak current	$\mathrm{I}_{\text {Don }}$	-	± 0.1	± 100	nA	$V s=V d=6 V$ and $\mathrm{Vs}=\mathrm{Vd}=-6 \mathrm{~V}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=0^{\circ} \mathrm{C}$
			-	-	± 100			$\mathrm{Ta}=50^{\circ} \mathrm{C}$
	Off isolation	OIRR	70	80	-	dB	$\mathrm{Vs}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	
	Cross talk	CCRR	70	90	-	dB	$\mathrm{Vs}=2 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=1 \mathrm{kHz}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$

Notes: 1. $-\mathrm{V}_{\text {REF }}$ to 0 and 0 to $V_{\text {REF }}$ is made into full scale.
2. Tolerance width at the time of repeated conversion.

Electrical Characteristics (cont.)

Block	Item	Symbol	Min	Typ	Max	Unit	Test Conditions
	Output source current	$\mathrm{I}_{\text {cs } 1}$	0.1	-	2	mA	RL1 $=0$ to 3000Ω
	Output source current accuracy	$\Delta \mathrm{l}_{\text {CS } 1}$	-	-	± 0.2	\%	RL1 $=0$ to 3000Ω
	Output source current drift		-	± 10	-	$\mathrm{ppM} /{ }^{\circ} \mathrm{C}$	
	Permissible load resistance	RL1	-	-	3000	Ω	With the sauce current maximum
	Output sink current	$\mathrm{I}_{\text {CS2 }}$	-	-	-0.2	mA	RL2 $=0$ to 1000Ω
	Output sink current accuracy	$\Delta \mathrm{l}_{\text {CS2 }}$	-	-	± 0.2	\%	RL2 $=0$ to 1000Ω
	Output sink current drift		-	± 10	-	$\mathrm{ppM} /{ }^{\circ} \mathrm{C}$	
	Permissible load resistance	RL2	-	-	1000	Ω	With the sink current maximum
	Reset detection voltage	Vs	4.3	4.5	4.7	V	
	Hysteresis (upper side)	Vhys	40	70	100	mV	
	Delay time	t_{D}	0.6	1	1.5	ms	$\mathrm{C}_{\text {DELAY }}=0.01 \mu \mathrm{~F}$
	Saturation voltage	VR (sat)	-	-	0.4	V	Isink $=6 \mathrm{~mA}$
	Input offset voltage	VIo	-	1.0	6.0	mV	$\mathrm{Rs}=10 \mathrm{k} \Omega$
	Input offset voltage drift	$\Delta \mathrm{Vm} / \Delta \mathrm{T}$	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{Rs}=10 \mathrm{k} \Omega$
	Input offset current	Il_{0}	-	20	200	nA	
	Input offset current drift	$\Delta \mathrm{lm} / \Delta \mathrm{T}$	-	1	-	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$	
	Input bias current	I_{B}	-	80	500	nA	
	Input bias current drift	$\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}$	-	2	-	$n A /{ }^{\circ} \mathrm{C}$	
	Open loop gain	AV	20000	100000	-	Ω	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=+8 \mathrm{~V},-4 \mathrm{~V}$
	Open loop gain rejection ratio	CMR	70	90	-	dB	$\mathrm{Rs}=10 \mathrm{k} \Omega$
	Power supply change rejection ratio	SVR	-	30	150	$\mu \mathrm{V} / \mathrm{V}$	$\mathrm{Rs}=10 \mathrm{k} \Omega$
	Maximum output voltage	Vom	+9, -5	+11, 7	-	V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$
	Slew rate	S. R.	0.4	0.8	-	V/us	$\mathrm{AV}=1$
	Maximum output current	Iop	5	10	-	mA	

Digital Format

First
Last

1. Multiplexer (MUX)

	5th	4th	3rd	2nd
ALL OFF	0	0	0	0
CH1 ON	1	0	0	0
CH2 ON	0	1	0	0
CH3 ON	1	1	0	0
CH4 ON	0	0	1	0
CH5 ON	1	0	1	0
CH6 ON	0	1	1	0
CH7 ON	1	1	1	0
CH8 ON	0	0	0	1
ALL OFF	1	0	0	1
ALL OFF	0	1	0	1
ALL OFF	1	1	0	1
ALL OFF	0	0	1	1
ALL OFF	1	0	1	1
ALL OFF	0	1	1	1
ALL OFF	1	1	1	1

3. Analog switch 2 (AS2)

	11th	10th	9th
ALL OFF	0	0	0
AS2-1ON	1	0	0
$2-2 O N$	0	1	0
$2-3 O N$	1	1	0
$2-4 O N$	0	0	1
$2-5 O N$	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

5. Analog switch 4 (AS4)

	15th	14th
ALL OFF	0	0
AS4-1ON	1	0
4-2ON	0	1
ALL OFF	1	1

2. Analog switch 1 (AS1)

	8th	7th	6th
ALL OFF	0	0	0
AS1-1ON	1	0	0
$1-2 O N$	0	1	0
$1-3 O N$	1	1	0
$1-4 O N$	0	0	1
$1-5 O N$	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

4. Analog switch 3 (AS3)

	13th	12th
ALL OFF	0	0
AS3-1ON	1	0
$3-2 O N$	0	1
ALL OFF	1	1

6. Analog switch 5 (AS5)

	LSB
OFF	0
AS5ON	1

Sequence Timing Chart

(1) A/D conversion

(2) DATA Input

About the Input Voltage VX

Given the applied voltage into 41 pin is VX in the diagram above,

$$
\mathrm{VX}=\frac{\mathrm{TGND}-\mathrm{TX}}{\mathrm{TGND}-\mathrm{TR}} \cdot \mathrm{VR} \quad \mathrm{~T}=\text { Pulse width }
$$

TGND, TR, and TX can be respectively expressed with $n G N D / f, n R / f$, and $n X / f$, (f is clock frequency; $n G N D$, $n R$, $n X$ is count values for clock frequency f.)

If these are substituted for an upper formula,

$$
V X=\frac{n G N D-n X}{n G N D-n R} \cdot V R
$$

VX can be expressed in this way for the number of counters.

Package Dimensions

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6--2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
7 With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below.
(1) artificial life support devices or systems
2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall indemnify and hor dorth in the above and purchasers who ele to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

