

M62303FP

High Precision Double Integration Type A/D Converter

REJ03D0862-0201 Rev.2.01 Dec 27, 2007

Description

M62303FP is a double integration type A/D converter support system, and is a semiconductor integrated circuit which can work as A/D converter of 14 bits or more by being used with MCU and by inputting SI, SCK1, CS, and CONTIN.

High precision A/D translation system can be realized without using high precision external parts by proofreading A/D acquired values with two or more known conversion values such as reference voltage, grounding (zero) voltage and so forth.

Features

- High precision (14 bits or more) double integration type A/D converter
- Positive/negative constant voltage source built-in (+6.3 V, -6.0 V Typ)
- Positive/negative constant current source built-in (Isource = 2 mA, Isink = 0.2 mA Max)
- Independent 2ch operational amplifier built-in
- System reset built-in (4.5 V Typ)

Application

High precision control systems, such as temperature control and speed control

Block Diagram

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
56	SI	Serial data input terminal. Serial data of 15 bits data length is input.
55	SCK1	Shift clock input terminal. Signal from SI terminal is input into 15-bit shift register at the rise of a clock.
54	CS	"L" level of this terminal enables shift clock, and "H" level makes shift register contents stored into multiplexer control register (analog switches) and unenables clock input.
52	CONT IN	A pulse is input. Double integration type A/D converter is started synchronizing with this pulse. Moreover, the optimal full scale can be set up by setting up with C and R so that it may be set to TCONT \leq 2.14 CR.
57	VDD	Digital part power supply terminal
51	GD	Digital part GND terminal. This terminal is externally connected to analog ground terminal when IC is operative.
50	RESET OUT	Output terminal of reset circuit supervising the fall of a digital part power supply.
49	DERAY	Reset output rise is delayed by adding capacitor.
60, 61, 62, 63, 64, 1, 2, 3	MUX1 to 8	Input side terminal of multiplexer (analog switch group) MUX.
4	MUXCOM	Output side COMMON terminal of multiplexer MUX.
5, 6, 7, 8, 9	AS1-1 to 5	Input side terminal of multiplexer (analog switch group) AS1.
10	AS1COM	Output side COMMON terminal of multiplexer AS1.
11, 12, 13, 14, 15	AS2-1 to 5	Input side terminal of multiplexer (analog switch group) AS2
16	AS2COM	Output side COMMON terminal of multiplexer AS2
17, 18	AS3-1 to 2	Source type constant current source output terminal
19, 20	AS4-1 to 2	Sink type constant current source output terminal
21	AS5	Analog switch AS5 input side terminal
22	AS5COM	Analog switch AS5 output side terminal
23, 59	VC+	Positive power supply output terminal for analog switch drive
24, 58	VC-	Negative power supply output terminal for analog switch drive
25	GA	Analog part GND terminal
26, 27, 28, 29	R5, R3, R2L, R2H	Reference current setting terminal for constant current source
30	R1	Source type output current setting terminal for constant current source
31	R4	Sink type output current setting terminal for constant current source
32	VA+	Analog part positive power supply terminal
33	VA–	Analog part negative power supply terminal
34	OP1+	Operational amplifier 1 non-inverting input terminal
35	OP1-	Operational amplifier 1 inverting input terminal
36	OUT1	Operational amplifier 1 output terminal
37	OUT2	Operational amplifier 2 output terminal
38	OP2–	Operational amplifier 2 inverting input terminal
39	OP2+	Operational amplifier 2 non-inverting input terminal
40	VREF	Standard voltage input for standard integration, and constant standard voltage input terminal for source current source setup
41	ADIN	A/D conversion input terminal. Analog signal into ADIN terminal is converted into pulse width proportional to the input voltage.
42	BUFFER	Output terminal of buffer amplifier which receives VREF, ADIN, and GA input. Internal analog switch for A/D conversion is switched by the CONTIN signal, and the voltage of three types of VREF, ADIN, and GA is output to BUFFER terminal through buffer amplifier.
43, 45	GA	Analog part GND terminal
44	INTIN	Input terminal of integration amplifier
46	INTOUT	Output terminal of integration amplifier
47	COMPIN	Input terminal of the comparator part of a double integration type A/D converter
48	VADR	Power supply output terminal used for reference terminal of comparator
53	PULSEOUT	A/D translation output terminal. Input analog signal is changed into pulse to be output.

RENESAS

Absolute Maximum Ratings

				$(Ta = 25^{\circ}C, unless otherwise noted)$
Item	Symbol	Ratings	Unit	Conditions
Analog power supply voltage	VA+ VA–	22	V	
Switch part power supply voltage	Vc+ Vc-	13.2	V	
Digital section supply voltage	V _{DD}	-0.3 to +7	V	
A/D converter analog input voltage	VAIN	-4 to +4	V	
PULSE OUT output current	Isink (PO)	10	mA	
Reset output current	Isink (RE)	10	mA	
Switch input voltage	V _{SWIN}	Vc- to Vc+	V	
		VA- to VA+ *1		At the line of fault voltage impression
Switch input current	Iswin	±20* ¹	mA	(Per one pin)
		±100* ¹		(All the switch sum totals)
Digital input voltage	V _{DIN}	-0.3 to V _{DD} + 0.3	V	
Power dissipation	Pd	740	mW	
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Note: 1. Represents the protection level at the time of abnormalities.

Operating Conditions

							(Ta = 25°C)
Block	ltem	Symbol	Min	Тур	Max	Unit	Test Conditions
	Power supply voltage (positive side)	VA+	+8.1	+12	+13	V	
	Power supply voltage (negative side)	VA–	-9	-8	-7.2	V	
	Power supply current (positive side)	IA+		13	17	mA	
Analog	Power supply current (negative side)	IA–	—	12	17	mA	
	A/D converter analog standard voltage	V _{REF}	1.0	2.5	3.0	V	
	A/D converter analog input voltage	V _{AIN}	$-V_{REF}$	—	V _{REF}	V	
	Switch input voltage	V _{SWIN}	-6	—	+6	V	
	Input integration time	T _{CONT}	2	—	20	ms	
	Power supply voltage	V _{DD}	4.80* ²	5.0	5.5	V	
	Power supply current	I _{DD}	—	1.8	3	mA	
	High-level input voltage	V _{IN}	2.4	—	—	V	
	Low-level input voltage	V _{IL}	_	—	0.8	V	
Digital	Serial clock waiting time	t _{SCSK}	250	—	—	ns	CS↓→SCKI↓
Dig	Serial input setup time	t _{SIK}	100	—	—	ns	SI→SCKI↑
	Serial input hold time	t _{HKI}	50	—	—	ns	SCKI∱→SI
	Serial clock low level time	t _{WLK}	200	_	—	ns	
	Serial clock high level time	t _{WHK}	200	_	—	ns	
	Chip selection hold time	t _{HKCS}	50		—	ns	SCKI↑→CS↑
nal ts	Integration capacitance	C _{INT} * ³	—	0.015	—	μF	
External parts	Voltage current conversion resistor	R _{INT}	56	230	500	kΩ	

Notes: 2. Represents the reset release voltage.

3. Set up as in 2.14 $R_{\text{INT}}-C_{\text{INT}}\ T_{\text{CONT}}.$

Electrical Characteristics

$(Ta = 25^{\circ}C, unless otherwise noted)$	
$- = 12 \text{ V}, \text{ VA} - = -\text{SV}, \text{ V}_{\text{REF}} = 2.5 \text{ V}, \text{ V}_{\text{DD}} = 5.0 \text{ V}, \text{ T}_{\text{CONT}} = 7.3 \text{ ms}$	

			VA-	+ = 12 V, Y	VA - = -S	$V, V_{REF} =$	$2.5 \text{ V}, \text{V}_{\text{DD}} = 5.0 \text{ V}, \text{T}_{\text{DD}}$	$\Gamma_{\rm CONT} = 7.3 \rm ms$
Block	ltem	Symbol	Min	Тур	Max	Unit	Test Cond	litions
۵.	Analog input current	l _l	—	20	80	nA		
hine	Resolution	ER	14	—	_	Bit		
lacl	Linearity error ^{*1}	N, L	_	0.012	_	%FS		
A/D Conversion Machine	Conversion range of fluctuation ^{*2}	—		0.006	_	%FS		
nve	Conversion time	Tc		8.28		ms	$C_{INT} = 0.015 \ \mu F$	$V_{AIN} = 2.5 V$
Co				15.58			R _{INT} = 230 kΩ	$V_{AIN} = 0 V$
Ą			—	22.88				$V_{AIN} = -2.5 V$
4	Saturation voltage	Vpo (sat)	_	—	0.4	V	Isink (PO) = 6 mA	
	Conversion standard voltage	V _{ADR}	-6.3	-6.0	-5.7	V		
Supply	Output voltage for switch part power supplies	Vc+	+6.0	+6.3	+6.6	V		
Power Supply	Output voltage for switch part power supplies	Vc-	-6.6	-6.3	-6.6	V		
	Input voltage fluctuation	ΔVc	_	—	100	mV	VA+: 8.1 to 13 V, VA-	: −9 to −7.2 V
	ON resistance	R _{ON}	_	100	200	Ω	-6 V Vds 6 V	Ta = 25°C
			_	_	200		ld = 1 mA	Ta = -40°C
			_	_	300			Ta = 85°C
	RON match		_	10	30	%		
	RON drift	$\Delta R_{ON} / \Delta T$	_	0.5	_	%/°C		
	Input off-leak	I _{Soff}	_	±0.1	±100	nA	Vd = -6 V, Vs = 6 V	Ta = 25°C
art	current		_	_	±100		and	Ta = 0°C
Å C			_	_	±100		Vs = -6 V, Vd = 6 V	Ta = 50°C
Switch Part	Output off-leak	I _{Doff}		±0.1	±100	nA	Vd = -6 V, Vs = 6 V	Ta = 25°C
Sv	current		_	_	±100		and	Ta = 0°C
			_	_	±100		Vs = -6 V, Vd = 6 V	Ta = 50°C
	On-channel leak	I _{Don}	_	±0.1	±100	nA	Vs = Vd = 6 V	Ta = 25°C
	current		_	_	±100		and	Ta = 0°C
			_	—	±100		Vs = Vd = -6 V	Ta = 50°C
	Off isolation	OIRR	70	80	—	dB	Vs = 2 Vp-p, f = 1 kHz	, R _L = 100 Ω
	Cross talk	CCRR	70	90	_	dB	Vs = 2 Vp-p, f = 1 kHz	$R_{\rm L} = 100 \Omega$

Notes: 1. $-V_{REF}$ to 0 and 0 to V_{REF} is made into full scale. 2. Tolerance width at the time of repeated conversion.

Electrical Characteristics (cont.)

Block	ltem	Symbol	Min	Тур	Мах	Unit	Test Conditions
	Output source current	I _{CS1}	0.1	—	2	mA	RL1 = 0 to 3000 Ω
	Output source current accuracy	ΔI_{CS1}	—	—	±0.2	%	RL1 = 0 to 3000 Ω
urrent	Output source current drift		—	±10	_	ppM/°C	
The Source of Current	Permissible load resistance	RL1	—	—	3000	Ω	With the sauce current maximum
onre	Output sink current	I _{CS2}	—	_	-0.2	mA	RL2 = 0 to 1000 Ω
The Sc	Output sink current accuracy	Δlcs2	—	—	±0.2	%	RL2 = 0 to 1000 Ω
	Output sink current drift		—	±10	_	ppM/°C	
	Permissible load resistance	RL2	—	—	1000	Ω	With the sink current maximum
	Reset detection voltage	Vs	4.3	4.5	4.7	V	
Reset	Hysteresis (upper side)	Vhys	40	70	100	mV	
	Delay time	t _D	0.6	1	1.5	ms	$C_{\text{DELAY}} = 0.01 \ \mu\text{F}$
	Saturation voltage	VR (sat)	—	—	0.4	V	lsink = 6 mA
	Input offset voltage	VIo	_	1.0	6.0	mV	Rs = 10 kΩ
	Input offset voltage drift	∆Vm/∆T	—	3	—	μV/°C	Rs = 10 kΩ
	Input offset current	llo	_	20	200	nA	
	Input offset current drift	∆lm/∆T	—	1		nA/°C	
<u> </u>	Input bias current	I _B	—	80	500	nA	
mplifie	Input bias current drift	$\Delta I_{\rm B} / \Delta T$	—	2	_	nA/°C	
al A	Open loop gain	AV	20000	100000	_	Ω	$R_L = 2 k\Omega, V_O = +8 V, -4 V$
erational Amplifier	Open loop gain rejection ratio	CMR	70	90	_	dB	Rs = 10 kΩ
Ope	Power supply change rejection ratio	SVR	—	30	150	μV/V	Rs = 10 kΩ
	Maximum output voltage	Vom	+9, –5	+11, -7	_	V	R _L = 10 kΩ
	Slew rate	S. R.	0.4	0.8		V/µs	AV = 1
	Maximum output current	Іор	5	10		mA	

Digital Format

I	First														Last
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	LSB
					·			·					·	·	,
		MU	JX			AS1			AS2		AS	53	AS	54	AS5

1. Multiplexer (MUX)

	5th	4th	3rd	2nd
ALL OFF	0	0	0	0
CH1 ON	1	0	0	0
CH2 ON	0	1	0	0
CH3 ON	1	1	0	0
CH4 ON	0	0	1	0
CH5 ON	1	0	1	0
CH6 ON	0	1	1	0
CH7 ON	1	1	1	0
CH8 ON	0	0	0	1
ALL OFF	1	0	0	1
ALL OFF	0	1	0	1
ALL OFF	1	1	0	1
ALL OFF	0	0	1	1
ALL OFF	1	0	1	1
ALL OFF	0	1	1	1
ALL OFF	1	1	1	1

2. Analog switch 1 (AS1)

0	· · · ·		
	8th	7th	6th
ALL OFF	0	0	0
AS1-10N	1	0	0
1-20N	0	1	0
1-30N	1	1	0
1-40N	0	0	1
1-50N	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

3. Analog switch 2 (AS2)

	11th	10th	9th
ALL OFF	0	0	0
AS2-10N	1	0	0
2-20N	0	1	0
2-30N	1	1	0
2-40N	0	0	1
2-50N	1	0	1
ALL OFF	0	1	1
ALL OFF	1	1	1

5. Analog switch 4 (AS4)

Ų	()	
	15th	14th
ALL OFF	0	0
AS4-10N	1	0
4-20N	0	1
ALL OFF	1	1

4. Analog switch 3 (AS3)

	13th	12th
ALL OFF	0	0
AS3-10N	1	0
3-20N	0	1
ALL OFF	1	1

6. Analog switch 5 (AS5)

	LSB
OFF	0
AS5ON	1

Sequence Timing Chart

(1) A/D conversion

(2) DATA Input

About the Input Voltage VX

Given the applied voltage into 41 pin is VX in the diagram above,

 $VX = \frac{TGND - TX}{TGND - TR} \bullet VR T = Pulse width$

TGND, TR, and TX can be respectively expressed with nGND/f, nR/f, and nX/f, (f is clock frequency; nGND, nR, nX is count values for clock frequency f.)

If these are substituted for an upper formula,

$$VX = \frac{nGND - nX}{nGND - nR} \bullet VR$$

VX can be expressed in this way for the number of counters.

Package Dimensions

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the purpose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, but has product data, diagrams, charts, programs, algorithms, and application is activated in this document, but has product data, diagrams, charts, programs, algorithms, and application is activated and the date their document, included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set of easonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a disclosed by Renesas states and splications, and process and splications, and process assumes no liability whatsoever for any damages incurred as a disclosed trong the process assumes no liability what seven to any damages incurred as a seven reasonable care in compiling the information in this document. Jour should evaluate the information in light of the total system before deciding about the applicability of otherwise in systems the failute on matincine on the seven for the pr

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com