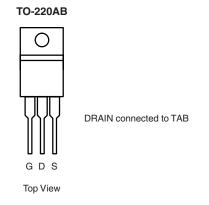
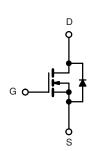


N-Channel 75-V (D-S) MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)	
75	$0.0077 \text{ at V}_{GS} = 10 \text{ V}$	90 ^d	69	


FEATURES

- TrenchFET® Power MOSFETS
- 100 % R_g and UIS Tested



APPLICATIONS

• Synchronous Rectification

Ordering Information: SUP90N08-7m7P-E3 (Lead (Pb)-free)

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	T _C = 25 °C, unless oth	erwise noted			
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	75	V	
Gate-Source Voltage		V _{GS}	± 20	v	
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 25 °C	1-	90 ^d		
Continuous Diam Current (1) = 150 C)	T _C = 70 °C	I _D	90 ^d	A	
Pulsed Drain Current		I _{DM}	180	_ ^	
Avalanche Current		I _{AS}	50		
Single Avalanche Energy ^a	L = 0.1 mH	E _{AS}	125	mJ	
	T _C = 25 °C		208.3 ^b	14/	
Maximum Power Dissipation ^a	T _A = 25 °C ^c	$ P_D$	3.75	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS				
Parameter	Symbol	Limit	Unit	
Junction-to-Ambient (PCB Mount) ^c	R _{thJA}	40	°C/W	
Junction-to-Case (Drain)	R _{thJC}	0.6		

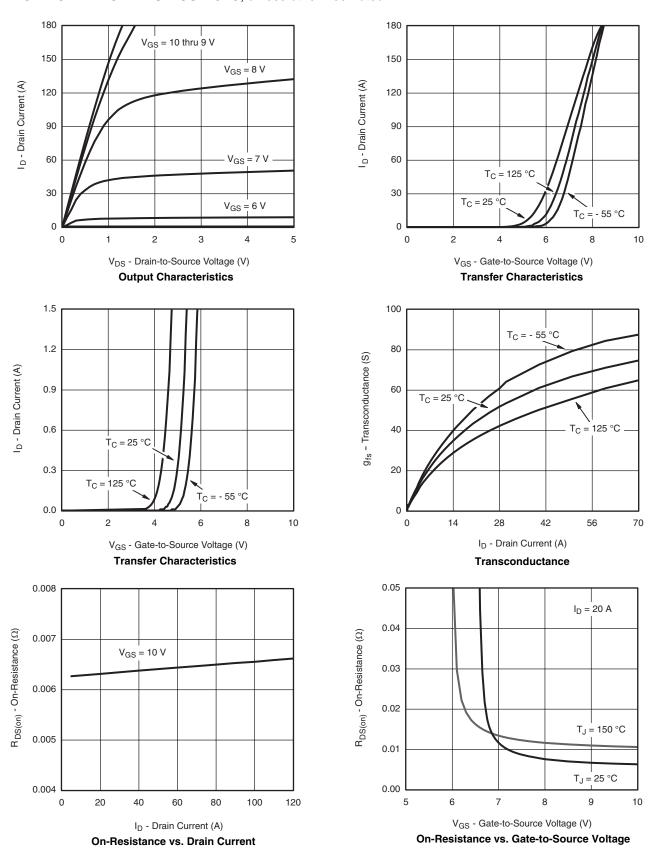
Notes:

- a. Duty cycle \leq 1 %.
- b. See SOA curve for voltage derating.
- c. When Mounted on 1" square PCB (FR-4 material).
- d. Package limited.

SUP90N08-7m7P

Vishay Siliconix

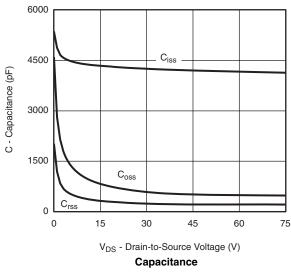
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static							
Drain-Source Breakdown Voltage	V _{DS}	$V_{DS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	75			V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2.5		4.5		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 250	nA	
Zero Gate Voltage Drain Current		V _{DS} = 75 V, V _{GS} = 0 V			1		
	I _{DSS}	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			50	μΑ	
		V _{DS} = 75 V, V _{GS} = 0 V, T _J = 150 °C			250		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 10 \text{ V}, V_{GS} = 10 \text{ V}$	70			Α	
	D	V _{GS} = 10 V, I _D = 20 A		0.0063	0.0077	Ω	
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A, T _J = 125 °C		0.0100	0.0125		
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 20 A		43		S	
Dynamic ^b							
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 30 V, f = 1 MHz		4250		pF	
Output Capacitance	C _{oss}			580			
Reverse Transfer Capacitance	C _{rss}			230			
Total Gate Charge ^c	Qg			69	105	nC	
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$		23			
Gate-Drain Charge ^c	Q _{gd}			21			
Gate Resistance	R_{g}	f = 1 MHz		1.2	2.4	Ω	
Turn-On Delay Time ^c	t _{d(on)}			17	30		
Rise Time ^c	t _r	$V_{DD} = 30 \text{ V}, R_L = 0.6 \Omega$ $I_D \cong 50 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$		5	10	ns	
Turn-Off Delay Time ^c	t _{d(off)}			22	40		
Fall Time ^c	t _f			6	15		
Source-Drain Diode Ratings and Cha	aracteristics 7	_C = 25 °C ^b					
Continuous Current	I _S				90	^	
Pulsed Current	I _{SM}				180	A	
Forward Voltage ^a	V_{SD}	I _F = 20 A, V _{GS} = 0 V		0.83	1.5	V	
Reverse Recovery Time	t _{rr}			65	100	ns	
Peak Reverse Recovery Current	I _{RM(REC)}	$I_F = 75 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}$		2.5	5	Α	
Reverse Recovery Charge	Q _{rr}			85	150	nC	

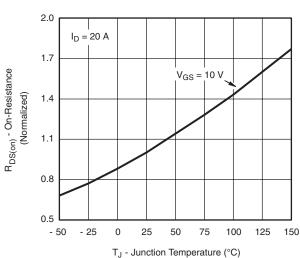

Notes:

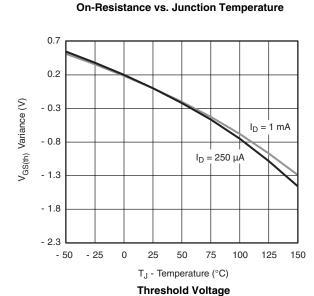
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.
- c. Independent of operating temperature.

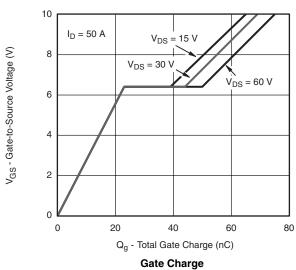
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

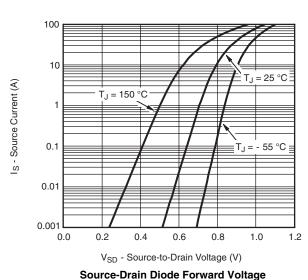
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

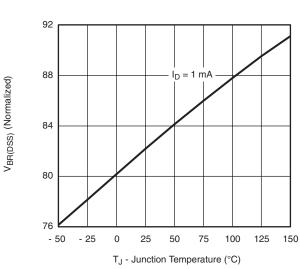


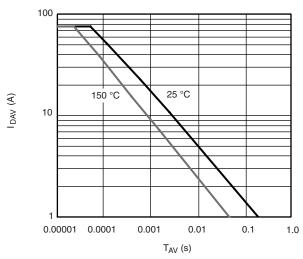

SUP90N08-7m7P


Vishay Siliconix

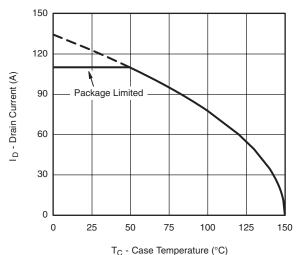

VISHAY.


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

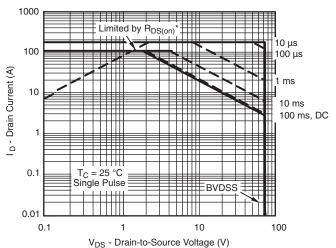




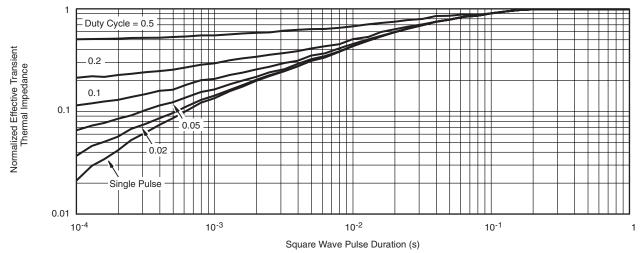
On-Resistance vs. Junction Temperature



Vishay Siliconix


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

Single Pulse Avalanche Current Capability vs. Time



Current Derating*, Junction-to-Case

* V_{GS} > minimum V_{GS} at which R_{DS(on)} is specified **Safe Operating Area, Junction-to-Case**

 * The power dissipation P_D is based on $T_{J(max)}=150\,^{\circ}\text{C}$, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?68638.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com