
SMD TUNING FORK CRYSTAL

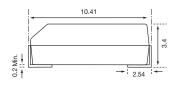
Housing for the ECX-205X/206X crystal is made from the same thermoplastic that is industry standard for integrated circuits. This ruggedized molded package is excellent for SMD applications.

FEATURES

- Low profile
- Long term stability
- Industry standard footprint
- Tape and Reel (2,000 pcs)
- PbFree/RoHS Compliant

Discontinued

PART NUMBERING GUIDE "EXAMPLE"


MANUFACTURER	R FREQUENCY			LOAD CAPACITANCE		PACKAGE TYPE*	
ECS -		.327	_	12.5	_	11X	
ECS -	_	.327	_	12.5	_	6X	

^{*} Package Type examples (11X= ECX-205X, 6X= ECX-206X)

OPERATING CONDITIONS/ELECTRICAL CHARACTERISTICS

PARAMETERS	ECX-205X/206X		UNITS	
NOMINAL FREQUENCY	Fo	32.768	KHz	
LOAD CAPACITANCE	CL	12.5 Standard (6.0 Optional)	pF	
DRIVE LEVEL	D_L	1.0 max.	μW	
CALIBRATION TOLERANCE	@ +25°C	±20	PPM	
EQUIVALENT SERIES RESISTANCE	R ₁	50 max.	ΚΩ	
TEMPERATURE COEFFICIENT		-0.040 PPM/°C ² max.	PPM/(ΔC°)	
OPERATING TEMPERATURE RANGE	T _{OPR}	-10 ~ +60	°C	
MAX. OPERATING TEMPERATURE RANGE		-40 ~ +85	°C	
Q FACTOR	Q	50,000 min.		
TURNOVER TEMPERATURE	To	+25 ± 5	°C	
STORAGE TEMPERATURE RANGE	T _{STG}	-55 ~ +125	°C	
INSULATION RESISTANCE	IR	$500 \mathrm{M}\Omega$ min./ DC $100 \mathrm{V}$	MΩ	
SHUNT CAPACITANCE	Co	2.0 typical	pF	
MOTIONAL CAPACITANCE	C ₁	0.003 pF typical	pF	
AGING (FIRST YEAR)	Δf/fo	±3 PPM max. @ +25°C	PPM	

PACKAGE DIMENSIONS (mm)

2.29

Figure 1) ECX-205X/206X - Side and End views

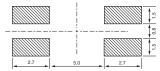


Figure 2) ECX-205X/206X Land Pattern- Top view

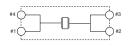
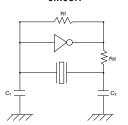
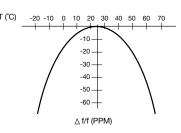



Figure 3) ECX-205X Pin Connection - Top view

Figure 4) ECX-206X Pin Connection - Top view

RECOMMENDED OSCILLATION CIRCUIT



ELECTRICAL CHARACTERISTICS

IC: TC 4069P Rf: $10M\Omega$ Rd: $330K\Omega$ (As required) $C_1 = 22pF$, $C_2 = 22pF$ $V_{DD} = 3.0V$

In this circuit, low drive level with a maximum of 1µW is recommended. If excessive drive is applied, irregular oscillation or quartz element fractures may occur.

PARABOLIC TEMPERATURE CURVE

To determine frequency stability, use parabolic curvature. For example: What is the stability at 45°C?

1) Change in T (°C) = 45-25=20°C 2) Change in frequency = $-0.04 \text{ PPM } \times \Delta T$)² = $-0.04 \text{ PPM } \times (20)^2$ = -16.0 PPM