M52042FP

NTSC Video Chroma Signal Processor

Description

The M52042FP is a semiconductor integrated circuit (IC) for picture signal processing that has been developed for NTSC system LCD color TV.

This IC has a built-in luminance signal processing circuit and color signal processing circuit, which is employed to convert a composite video signal to an RGB signal.

Features

- Low voltage and low power dissipation design
- Built-in Y/C separation circuit and external chroma trap switchable (fc is nearly equal to 1.5 MHz .)
- Built-in sync separation circuit
- Provided with Y-signal blanking function by HD pulse
- R.G.B. signal output
- Tint, contrast, picture quality and color control linearly adjustable
- 24-pin, shrink pitch, flat package employed
- Same package as in PAL system video chroma IC M52045FP, pin perfectly compatible

Application

LCD color TV and LCD color view finder

Recommended Operating Condition

Supply voltage range: 3.7 to 4.5 V
Rated supply voltage: 4.0 V

Block Diagram

Pin Arrangement

Outline: PRSP0024GA-A (24P2Q-A)

Pin Description

Pin No.	Name	Peripheral Circuit of Pins
1	VIDEO IN (Video input)	
2	SYNC SEP IN (SYNC separation input)	
3	ACC FILTER	
4	SYNC OUT (SYNC separation output)	
5	HD IN (HD pulse input)	

Pin No.	Name	Peripheral Circuit of Pins
6	PED CLAMP C (Pedestal-clamped capacitance)	
7	CHROMA TRAP	
8	Y OUT (Y output)	
9	CONTRAST CONT. (Contrast control)	
10	R OUT (R output)	$20 \mathrm{k} \sum^{\dot{k}} 20 \mathrm{k}{ }^{\circ} \cdot \mathrm{V}_{\mathrm{CC}}$
11	G OUT (G output)	(11) (12)
12	B OUT (B output)	
13	GND (Grounding)	-
24	$\mathrm{V}_{\mathrm{CC}}+4 \mathrm{~V}$ (Power supply)	-

Pin No.	Name	Peripheral Circuit of Pins
16	S.W. (Selector switch)	
22	VCXO MONITOR	
14	PIX CONT. (Picture quality control)	
15	KILLER OUT (Killer output)	
17	APC FILTER	

Pin No.	Name	Peripheral Circuit of Pins
18	KILLER FILTER	
19	TINT CONT. (Tint control)	
20	COLOR (Color control)	
21	VCXO IN (VCXO input)	
23	VCXO OUT (VCXO output)	

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V_{CC}	4.8	V
Power dissipation	Pd	680	mW
Operating temperature	Topr	-10 to 70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-45 to 120	${ }^{\circ} \mathrm{C}$
Thermal derating	$\mathrm{K} \theta$	5.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Electrostatic capacity	Vmax	$\pm 200^{*}$	V

Note: Charging capacity: 200 pF

Electrical Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Min	Typ	Max	Unit	$\begin{gathered} \hline \text { Test } \\ \text { No } \\ \hline \end{gathered}$	Test Conditions
Circuit current	ICC	-	17	21	mA	1	Input standard color bar signal of $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$.
SYNC SEP section							
SYNC tip voltage	Vsync 1	2.20	2.30	2.40	V	2	Measure each output signal SYNC tip voltage at pins (1), (7) when standard color bar signal of $0.7 \mathrm{Vp}-\mathrm{p}$ is input.
	Vsync 7	1.25	1.40	1.50			
SYNC output amplitude	Vsync H	2.7	3.1	3.4	Vp-p	3	Input only SYNC pulse of pulse width $4.7 \mu \mathrm{~s}$ to pin (1). Measure the output amplitude at pin (4) when the input SYNC pulse amplitudes are 0.2 and 0.05 Vp -p.
	Vsync L	2.7	3.1	3.4			
SYNC output pulse width	Tsync H	3.7	4.7	5.7	$\mu \mathrm{s}$	4	Input only SYNC pulse of pulse width $4.7 \mu \mathrm{~s}$ to pin (1). Measure the output amplitude at pin (4) when the input SYNC pulse amplitudes are 0.2 and 0.05 Vp -p.
	Tsync L	3.7	4.7	5.7			
SYNC output pulse delay	Dsync H	3.7	4.7	6.0	$\mu \mathrm{S}$	5	Input only SYNC pulse of pulse width $4.7 \mu \mathrm{~s}$ to pin (1). Measure the pulse width + delay time when the input SYNC pulse amplitudes are 0.2 and $0.05 \mathrm{Vp}-\mathrm{p}$.
	Dsync L	3.7	4.7	6.0			
Video section							
YLPF frequency characteristics (Pin (7))	YLPF (L)	1.45	1.55	-	MHz	6	Measure the frequency at which the sine wave output amplitude is -3 dB when the input signal ($1000000 \Omega \Omega[10.2$ vp-p) $0.2 \mathrm{Vp}-\mathrm{p}$ is input. Also measure the output gain at input sine wave 3.58 MHz .
	YLPF (H)	-30	-24	-21	dB		
YLPF frequency characteristics (through mode)	YLPF through	5.0	7.0	10.0	MHz	$7{ }^{\prime}$	Measure the frequency at which the sine wave output amplitude is -3 dB when the input signal ($1 \bigcirc \bigcirc 0000 \Omega\lfloor[10.2 \mathrm{vp}$-p) $0.2 \mathrm{Vp}-\mathrm{p}$ is input, and V 16 is $4.0 \mathrm{~V}_{\mathrm{PC}}$ input.
Maximum output	Ymax	1.1	1.7	1.7	Vp-p	7	Input standard staircase wave of $0.7 \mathrm{Vp}-\mathrm{p}$. Measure the output amplitude at pin (12) when V9 is 0 V .
Video amplifier gain	GYmax	4.0	6.0	8.0	dB	8	Input standard staircase wave of $0.7 \mathrm{Vp}-\mathrm{p}$. Calculate the ratio between the output amplitude at pin (12) and input amplitude when V9 is 1.7 V .
Contrast control characteristics	Yctrast (1)	1.20	2.45	4.50	dB	9	Input standard staircase wave of $0.7 \mathrm{Vp-p}$, and calculate the ratio of the input amplitude to the output amplitude in Test No. 8 above when V 9 is changed $1 \mathrm{~V}, 2.5 \mathrm{~V}$ and 3.5 V .
	Yctrast (2, 5)	-7.3	-5.0	-2.7			
	Yctrast (3, 5)	-	-30	-17			
PIX control characteristics	XPIX (4)	-3.5	-2.0	-0.5	dB	10	Input 1.5 MHz sine wave of $0.2 \mathrm{Vp}-\mathrm{p}$ to the input. Measure each output amplitude at pin (12) when V 9 is 1.7 V , and V 14 is changed to 2,4 and 0 V and calculate the ratio between the input amplitude and the output amplitude when V14 $=2 \mathrm{~V}$.
	XPIX (0)	10.0	12.0	14.0	dB		
Y AMP gain	GYmap	9.1	11.0	12.6	dB	11	Input standard staircase wave of $0.7 \mathrm{Vp}-\mathrm{p}$ and calculate the ratio between the output amplitude at pin (8) and input amplitude.
PED offset level	Vped	0.00	0.05	0.06	-	12	With input SYNC pulse at $0.2 \mathrm{Vp-p}$, measure pin (12) output pedestal offset, and calculate ratio of the offset to that when $0.7 \mathrm{Vp}-\mathrm{p}$ standard staircase is input.

Electrical Characteristics (cont.)

Item	Symbol	Min	Typ	Max	Unit	$\begin{aligned} & \text { Test } \\ & \text { No } \end{aligned}$	Test Conditions
Chroma section							
Acc control characteristics	Cacc (+4) Cacc (-20)	0 -6.0	0.7 -2.0	1.5 0	dB	14	Input burst $0.2 \mathrm{Vp}-\mathrm{p}+\mathrm{CW} 4.33 \mathrm{MHz}$ shall be 0 dB . Measure the output at pin (12) when the input is changed to +4 dB and -20 dB , and calculate the ratio of the measured amplitude to the output amplitude at 0 dB .
Killer operation	Ckilr	-53	-49	-43	dB	15	Input a chroma signal of $0.2 \mathrm{Vp}-\mathrm{p}$ to the input. Reduce the amplitude and measure the amplitude ratio when the voltage at pin (15) exceeds 2.5 V .
Color control characteristics	Cast (4)	2	2.2	4.5	dB	16	Input burst $0.2 \mathrm{Vp}-\mathrm{p}+\mathrm{CW} 4.33 \mathrm{MHz}$, change V20 to $2 \mathrm{~V}, 4 \mathrm{~V}, 3 \mathrm{~V}, 1 \mathrm{~V}$ and 0.5 V to measure each output (100 kHz beat) amplitude at pin (12), and calculate the ratio between the measured amplitude and the output amplitude at $\mathrm{V} 20=1 \mathrm{~V}$.
	Cast (3)	1.5	2.0	4.0			
	Cast (1)	-8.5	-6	-4			
	Cast (0, 5)	-17	-13	-10			
APC pull-in range	$\Delta \mathrm{fapc}$	+400	+600 -300	-200	Hz	17	Input only SYNC, and after adjusting free run, input $0.2 \mathrm{Vp}-\mathrm{p}$ the frequency. Measure the frequency when VCXO oscillator is placed in a locked condition from the free-run condition.
B demodulator sensitivity	DB	0.8	1.2	1.6	Vp-p	18	Input CW 4.33 MHz of $0.2 \mathrm{Vp}-\mathrm{p}$ to the input, and measure the output amplitude at pin (12) when $\mathrm{V} 20=1 \mathrm{~V}$.
Demodulated output voltage ratio	$R(R / B)$ $R(G / B)$	0.46 0.20	0.52 0.30	0.60 0.40	-	19	Input CW 4.33 MHz of 0.2 Vp -p to the input, measure the output amplitude at pins (10), (11) when $\mathrm{V} 20=1 \mathrm{~V}$, and calculate the ratio of the measured amplitude to the output amplitude in Test No. 18 above.
Killer output voltage H	Vkiller H	2.5	3.2	-	V	21	Measure DC voltage at pin (15) when 0 V and 4 V are applied to pin (18).
Killer output voltage L	Vkiller L	-	0.20	0.40			
TINT control variance	T	75	85	100	deg	22	Input a chroma signal of $0.4 \mathrm{Vp}-\mathrm{p}$ to the input, and measure the phase variance at pin (12) when 0 V and 4 V are applied to V19.
TINT control characteristics	Topen	-5	+5	+15	deg	23	Apply B monochromatic wave, (variable phase) $0.4 \mathrm{Vp}-\mathrm{p}$ and burst $0.2 \mathrm{Vp}-\mathrm{p}$ to the input. Measure the input phase in which the output at pin (12) becomes maximum with V19 open as burst phase -180 degrees.
	Tmin Tmax	-55 +30	40 -40	-25 +60	deg		Apply B monochromatic wave (variable phase) $0.4 \mathrm{Vp}-\mathrm{p}$ and burst $0.2 \mathrm{Vp}-\mathrm{p}$ to the input. Measure the input phase in which the output at pin (12) becomes "maximum" when V 19 is 0 V and 4 V as burst phase -180 degrees.
HD for chroma delay	Dhd	-	2.0	2.2	$\mu \mathrm{S}$	24	Apply B monochromatic wave $0.4 \mathrm{Vp}-\mathrm{p}$ and burst $0.2 \mathrm{Vp}-\mathrm{p}$ to the input. Measure the delay time from HD pulse rise to the chroma rise of pin (12) output.

Input Signal

Standard color bar PAL (Standard staircase wave has no chroma signal)

Burst + CW
(B monochromatic
wave, etc.) PAL

$$
0.2 \mathrm{Vp}-\mathrm{p}
$$

Sine wave

Continuous sine wave (CW)

SYNC pulse

Test Circuit

Note: The evaluation of the above application circuit should be performed with great care, because APC characteristics, etc. differ considerably according to crystal characteristics and board pattern.

Application Example

Note: The evaluation of the above application circuit should be performed with great care, because APC characteristics, etc. differ considerably according to crystal characteristics and board pattern.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble

1. Renesas Technology Corp. puts the maximer may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the tim publication of these mat that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, inc
 450 Holger Way, San Jose, CA 95134-1368, U.S.A
 Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

