Dielectric Resonator Oscillator Model MDR6100
 Phase Locked External Reference
 3.0 to 21.0 GHz

Specifications ${ }^{(1)}$:

| Frequency Range: ${ }^{(2)}$ | $3.0-6.0 \mathrm{GHz}$ | $6.0-21.0 \mathrm{GHz}$ | |
| :--- | :--- | :--- | :--- | :--- |
| Mechanical Tuning Bandwidth (min.) $)^{(3)}$ | $\pm 10 \mathrm{MHz}$ | $\pm 20 \mathrm{MHz}$ | |
| Stability (max.) | Note 4 | Note 4 | |
| Harmonics (max.) | -20 dBc | -20 dBc | |
| Spurious (max.) | -80 dBc | -80 dBc | |
| Output Power (min.) ${ }^{(5)}$ | +13 dBm | +13 dBm | Outline |
| (GHz) | 3.0 to 8.0 | DL1 | |
| 6.0 to 14.0 | DL | | |
| 14.0 to 21.0 | DLA | | |

Phase Noise (typ.)	3 GHz	6 GHz	12 GHz	20 GHz
1 kHz Offset, $\mathrm{dBc} / \mathrm{Hz}$	-108	-104	-98	-90
10 kHz Offset, $\mathrm{dBc} / \mathrm{Hz}$	-118	-114	-108	-100
100 kHz Offset, $\mathrm{dBC} / \mathrm{Hz}$	-124	-120	-114	-105
1 MHz Offset, $\mathrm{dBc} / \mathrm{Hz}$	-140	-136	-128	-120

External Reference Input	100 MHz nominal @ 0 dBm $\pm 3 \mathrm{~dB}$
Phase Voltage Set to (nom.) Lock Range (min.)	$\begin{aligned} & \text { +5.0 VDC } \\ & +2 \text { to }+9 \mathrm{VDC} \\ & \hline \end{aligned}$
Phase-Lock Alarm Locked Unlocked ${ }^{(7)}$	Transistor Collector (NPN) Open Vc = 30 VDC max. Saturated to Ground Vce $=+0.5$ VDC max. $\mathrm{Ic}=50 \mathrm{~mA}$ max.
Input DC ${ }^{(8)}$	+12 VDC $\pm 3 \%$ @ 275 mA max.
Operating Temperature	-20 to $+65^{\circ} \mathrm{C}$
RF Connector	SMA Female
DC Connector	Solder Pin

1. Specifications labeled "min." or "max." are guaranteed in a 50 Ohm system over the specified temperature range.
2. Output frequency must be specified and it is an integer multiple of the external reference input frequency.
3. Mechanical tuning of DRO in unlocked mode.
4. Frequency stability is determined by the external reference.
5. Higher output power is available.
6. Phase noise at offsets <100 kHz is dependent on externa reference and can be
approximated as follows

- Phase Noise (dB) = 20 log
(N) $+3 d B$ above the external
reference phase noise.
- Where $N=$ multiple of reference.

7. Actual or impending loss of lock.
8. Other input voltages available. 9. Package must be verified by Spectrum Microwave.
